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Introduction

Cryptologie

La cryptologie est la science de la sécurité de l’information. Elle permet, entre autres, de protéger
les données en les « chiffrant », pour qu’il ne soit plus possible de trouver la moindre information
les concernant. On distingue ensuite la cryptographie, relative à la construction des primitives,
de la cryptanalyse, qui étudie les attaques possibles contre les schémas existants. Il existe deux
types de cryptographies, la cryptographie symétrique, et la cryptographie asymétrique (ou à
clé publique, introduite par Diffie et Hellman en 1976 [DH76]). Prenons l’exemple d’un schéma
de chiffrement, l’objectif de ce schéma est d’envoyer un message de façon confidentielle. En
cryptographie symétrique, deux utilisateurs partagent la même clé secrète, qui leur permet, grâce
à des algorithmes de chiffrement et de déchiffrement, de chiffrer le message et de le déchiffrer (à
partir du chiffré). Le problème ici est de trouver un moyen, lui-même sûr, de partager cette clé
secrète entre les utilisateurs. Pour régler ce problème la cryptographie asymétrique propose à
chaque utilisateur d’avoir un couple de clés : l’une secrète et l’autre publique, reliées bien sûr,
mais de telle façon qu’il ne soit pas possible de retrouver la clé secrète étant donné la clé publique.
Puis grâce à la clé publique d’un utilisateur A, un utilisateur B va pouvoir chiffrer un message et
l’envoyer à A, qui sera le seul à pouvoir extraire le message de ce chiffré grâce à sa clé secrète.
Ainsi les deux utilisateurs n’ont plus besoin de partager une clé secrète pour communiquer. Ils
doivent cependant s’assurer que l’utilisateur avec lequel ils communiquent est bien celui qu’ils
pensent.

Il existe de nombreuses autres primitives cryptographiques qui sont utilisées au quotidien, par
exemple : les signatures numériques (qui permettent justement d’authentifier des messages), les
fonctions de hachage (qui permettent par exemple de vérifier que deux données sont les mêmes,
sans les dévoiler) ou les schémas de chiffrement basé sur l’identité (la clé publique sera alors
l’identité de l’utilisateur). Il existe aussi des primitives prometteuses, qu’on espère pouvoir utiliser
bientôt, comme le chiffrement complètement homomorphe (qui permet de faire des opérations,
qu’on voudrait faire sur des données, directement sur les chiffrés de ces donnés, puis de déchiffrer
pour obtenir le résultat voulu) ou les applications multilinéaires cryptographiques que nous
étudierons en détail plus loin. Pour toutes ces primitives, différents modèles de sécurité peuvent
être définis. Ils garantissent une sécurité contre différents types d’attaques où les adversaires sont
plus ou moins puissants. Dans le cas du chiffrement par exemple, l’objectif minimal de sécurité
est de ne pas pouvoir distinguer un message chiffré d’un autre : si un attaquant envoie deux
messages et reçoit un chiffré de l’un des deux, il ne doit pas être capable de décider lequel a été
chiffré. Les autres niveaux de sécurité vont ensuite permettre à l’attaquant de faire des requêtes
de chiffrement, ou de déchiffrement, à différents moments de l’attaque.

Il existe aussi différentes familles de problèmes algorithmiques servant de fondement à la
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construction de protocoles cryptographiques. Dans chacun d’entre eux, la sécurité des primitives
va reposer de manière prouvée, ou heuristique, sur des problèmes mathématiques bien particuliers
et différents. Un exemple parmi les plus utilisés est la cryptographie de type RSA, introduite
en 1978 [RSA78]. Dans cet exemple, la difficulté de retrouver la clé secrète en fonction de la clé
publique repose sur la difficulté algorithmique présumée de factoriser un produit de deux grands
nombres premiers. La clé publique est un grand nombre N , produit de deux nombres premiers p
et q, et la clé secrète est liée à ces deux nombres inconnus et est difficile à retrouver. Mais il n’existe
pas de preuve de sécurité à proprement parler pour ces schémas. D’autres hypothèses algorithmique
couramment utilisées sont la difficulté du problème du logarithme discret dans des groupes bien
choisis [DH76, Gam85], le problème de décodage des codes correcteurs d’erreurs [McE78], ou
celui de résoudre des systèmes polynomiaux [Pat96].

Cryptographie reposant sur les réseaux euclidiens

La cryptographie reposant sur les réseaux euclidiens est une autre branche de la cryptographie, qui
a débuté avec les travaux d’Ajtai [Ajt96]. Le nom de cette cryptographie fait référence aux preuves
de sécurité d’une partie de ses primitives, qui reposent sur la difficulté présumée de problèmes
algorithmiques sur les réseaux euclidiens. Elle a de nombreux avantages : son fonctionnement est
simple, son efficacité potentielle est importante et elle semble résister aux attaques quantiques. Les
attaques quantiques sont une préoccupation importante en cryptographie depuis que Shor [Sho97]
a réussit à résoudre, grâce à des algorithmes quantiques, des problèmes, comme la factorisation du
produit deux grand nombres premier, que l’on ne sait pas résoudre efficacement en algorithmique
classique.

De plus, comme nous allons le voir plus en détails, la cryptographie reposant sur les réseaux eu-
clidiens permet de construire de très nombreux types de primitives, des plus basiques (par exemple :
chiffrement [HPS98, Reg05, GPV08, PVW08, LP11], signature [GGH97, GPV08, LM08, Lyu09,
Lyu12, GLP12, DDLL13], fonction de hachage [Ajt96, GGH96, Mic02a, PR06, LM06, LM08,
Lyu08] ...) aux plus avancées (chiffrement reposant sur l’identité [GPV08, CHKP10, ABB10a,
ABB10b], chiffrement par attribut [GVW13], chiffrement complètement homomorphe [Gen09,
BV11, BGV12, Bra12], applications multilinéaires cryptographiques [GGH13a, CLT13] et offus-
cation de programmes [GGH+13b]).

Un réseau euclidien est un sous groupe additif discret de Rn, et est représenté par une base B.
Le réseau engendré par la base B est l’ensemble des combinaisons linéaires entières des éléments
de cette base. Un exemple est donné dans la Figure 1 pour n = 2.
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•

•
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• • •

• • •

• • •

• • •

b1

b2

Figure 1: Exemple de réseau euclidien en dimension 2.

Il existe de nombreux problèmes algorithmiques concernant les réseaux. Les plus connus sont le
problème du plus court vecteur, ou Shortest Vector Problem (SVP), et le problème du plus proche
vecteur, ou Closest Vector Problem (CVP). Etant donné une base d’un réseau, le problème SVP
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consiste à trouver un vecteur non nul le plus court (par exemple pour la norme euclidienne) de ce
réseau. Le problème CVP prend de plus en entrée un vecteur quelconque t ∈ Rn, et demande de
trouver un vecteur du réseau le plus proche de ce vecteur cible. Si on revient à l’exemple de la
Figure 1, ces problèmes sont faciles à résoudre (car la dimension du réseau est petite), mais en
grande dimension ils semblent très difficiles. Ils sont NP-difficile (classiquement pour CVP, sous des
réductions probabilistes pour SVP) [vEB81, Mic98, BS99]. Ils restent difficiles à résoudre même
si on leur autorise un facteur d’approximation γ, tant que γ reste petit : par exemple polynomial
en la dimension. Pour SVP, au lieu de chercher un vecteur non-nul le plus court, on cherche un
vecteur de norme au plus γ multipliée par la norme du plus petit vecteur du réseau. Les problèmes
SVP et CVP ont de plus de nombreuses variantes, et c’est souvent sur ces variantes que repose
la sécurité des primitives cryptographiques. La conjecture sur laquelle repose la cryptographie
reposant sur les réseaux Euclidiens est la suivante : ces problèmes et leurs variantes sont difficiles à
résoudre même pour des facteurs d’approximation polynomiaux en la dimension du réseau [MR09].
Cette conjecture est soutenue par de nombreuses années d’étude des algorithmes pouvant résoudre
ces problèmes, qui gardent une complexité au mieux exponentielle en la dimension n du réseau
pour un facteur d’approximation polynomial ou une complexité polynomiale mais pour un facteur
d’approximation quasiment exponentiel [LLL82, Sch87, AKS01, GN08].

À partir de ces problèmes, le principe de la preuve de sécurité d’une primitive est le suivant.
Lorsqu’on construit une primitive cryptographique, on modélise les attaques possibles contre
cette primitive par un problème à résoudre. Si l’attaquant peut résoudre ce problème alors il
est capable de retrouver des informations sur les données secrètes et la primitive n’est pas sûre,
mais si on montre que ce problème n’est pas soluble en un temps raisonnable, alors on montre
que la primitive construite est sûre. Pour chaque type de primitive, il existe différents niveaux
de sécurité, qu’on peut alors modéliser par différents problèmes. Pour garantir la sécurité d’une
primitive, on montre alors que le problème sur lequel repose l’attaque est au moins aussi difficile
à résoudre qu’un problème réputé difficile. On dit qu’on effectue une réduction d’un problème
difficile à cette attaque. Cette réduction garantit que l’attaque n’est pas possible en un temps
raisonnable : la primitive est sûre. Dans la cryptographie reposant sur les réseaux Euclidiens, ce
problème est un problème portant sur les réseaux Euclidiens, typiquement une variante de SVP.
Notons qu’il existe aussi des constructions dont la sécurité ne repose pas sur une réductions aux
problèmes dans les réseaux. C’est le cas du schéma de chiffrement NTRU [HPS98], mais dont
la sécurité d’une variante a été récemment montrée par [SS13]. C’est aussi le cas du protocole
d’échange de clé non-interactif de Diffie-Helmann pour un grand nombre d’utilisateur, construit à
partir applications multilinéaires cryptographiques [GGH13a]. Dans ces deux cas, la sécurité est
présumée suite à l’étude des meilleures attaques connues, qui reviennent elles aussi à résoudre
une variante de SVP.

Pour effectuer les réductions utilisées dans les preuves de sécurité, on utilise souvent des
problèmes intermédiaires, appelés le problème Small Integer Solution (SIS), introduit par Ajtai en
1996 [Ajt96], et le problème Learning With Errors (LWE), introduit par Regev en 2005 [Reg05].
Ces deux problèmes sont à la base de cette cryptographie. Le problème SIS revient à trouver
une solution « petite » d’un système d’équations linéaires sous-déterminé modulo un entier q à
n inconnues, la dimension du problème. Il permet par exemple de construire des schémas de
signature numérique [GPV08, CHKP10, Boy10] et des fonctions de hachage [Ajt96]. Le problème
LWE consiste à trouver une solution d’un système d’équations linéaires sur-déterminé mais
bruité, avec n inconnues et modulo un entier q. Il permet par exemple de construire des schémas
de chiffrement avancés [Reg05, GPV08, BV11, GVW13]. Pour tous ces schémas on prouve la
sécurité en montrant que réussir une attaque est au moins aussi difficile que de résoudre SIS ou
LWE. La difficulté de ces deux problèmes est donc très importante pour assurer la sécurité des
primitives construites à partir d’eux. Il reste ensuite à montrer que ces deux problèmes sont en
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effet difficiles à résoudre. On utilise pour cela des réductions particulières, appelées réduction
« pire-cas moyen-cas ». On montre que SIS ou LWE (qui est donné pour des instances aléatoires,
donc un cas « moyen »), est au moins aussi difficile à résoudre que toutes les instances d’une
variante de SVP (même les plus difficiles d’entre elles, le « pire » des cas). En 1996, Ajtai [Ajt96]
a proposé la première réduction d’un problème difficile sur les réseaux Euclidiens au problème
SIS, montrant ainsi que ce problème était difficile à résoudre. En 2005, Regev [Reg05, Reg09] a
proposé une réduction quantique (utilisant de l’algorithmique quantique en plus de l’algorithmique
classique) pour prouver la difficulté du problème LWE.

On peut ainsi construire des primitives sûres reposant sur ces deux problèmes. Mais, pour
assurer leur sécurité, les paramètres de ces primitives doivent être suffisamment grands pour
que les variantes de SVP soient difficiles à résoudre (en pratique, on veut un paramètre n au
minimum de l’ordre de quelques centaines). Ceci rend les premières constructions reposant sur
SIS et LWE difficiles à utiliser en pratique. Pour résoudre ce problème, des versions structurées de
SIS et LWE, permettant un gain en complexité important, ont été proposées. Elles sont appelées
R-SIS et R-LWE où le R correspond à « Ring » pour un anneau, typiquement ici un anneau de
polynôme. Ces variantes structurées ont été prouvées difficiles, sous certaines restrictions, par des
réductions à une variante de SVP [Mic02a, LM06, PR06, SSTX09, LPR10]. Il faut notamment
restreindre le problème aux réseaux idéaux, qui sont un type bien particulier de réseaux définis à
partir des idéaux de l’anneau concerné.

Contributions

Mon travail durant ces trois années de doctorat a porté sur deux aspects de la cryptographie
reposant sur les réseaux Euclidiens : les fondements de la sécurité, en étudiant la difficulté du
problème LWE et de variantes des problèmes SIS et LWE, et les constructions de primitives, en
travaillant sur les signatures de groupe et sur les applications multilinéaires cryptographiques.

Fondements de sécurité
Comme nous l’avons vu, la difficulté des problèmes LWE et SIS, ainsi que de leurs variantes
structurées est à la base de la sécurité des primitives cryptographiques. La difficulté du problème
LWE en particulier a été prouvée en 2005 par Regev grâce à une réduction quantique. Ce type
de réduction utilise de l’algorithmique quantique en plus de l’algorithmique classique. Ceci
signifie par exemple, que si on découvre un algorithme efficace pour résoudre LWE, on ne saura
pas pour autant résoudre le problème « difficile » dans les réseaux si on ne dispose pas d’un
ordinateur quantique. D’autre part, si on découvre que les problèmes dans les réseaux sont
possibles à résoudre avec des ordinateurs quantiques, cette réduction reviendrait à réduire LWE à
un problème facile, et n’aurait donc plus d’intérêt (en particulier si LWE s’avère quantiquement
facile mais classiquement difficile). Il était donc important de savoir si il existait une réduction
classique des problèmes dans les réseaux à LWE. En 2009, Peikert [Pei09] a partiellement répondu
à la question en proposant la première réduction classique, mais celle-ci ne fonctionne que si le
paramètre du modulo pour LWE est exponentiel. Mais le modulo q utilisé dans LWE détermine
la taille des données (on se place dans {0, . . . , q − 1}) et pour des applications cryptographiques
un modulo trop grand ne permet pas d’avoir des schémas efficaces.

Dans un travail commun avec Zvika Brakerski, Chris Peikert, Oded Regev et Damien Stehlé,
nous donnons la première réduction classique de GapSVP (la version décisionnelle de SVP) à
LWE pour un modulo polynomial. Nous obtenons aussi des résultats intermédiaires sur des
variantes de LWE, et notamment que la difficulté de LWE est une fonction de n log q, où n est la
dimension du problème et q le modulo.

x



• [BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev et Damien Stehlé.
Classical Hardness of Learning with Errors. STOC, pages 575-584. ACM, 2013.

J’ai par ailleurs travaillé sur les variantes structurées de SIS et LWE. Dans un article commun
avec Damien Stehlé, nous étudions deux problèmes : un nouveau problème appelé M-SIS et
un problème appelé M-LWE, introduit par Brakerski, Gentry et Vaikuntanathan [BGV11]. Le
problème M-SIS est un problème intermédiaire qui généralise les problèmes SIS et R-SIS, où le
« M » correspond à « Module » qui est la structure algébrique généralisant l’espace vectoriel et
l’anneau. De même, le problème M-LWE généralise les problèmes LWE et R-LWE. Nous faisons
le lien entre les deux réductions existantes de SIS à R-SIS pour M-SIS [GPV08, LM06] et de
LWE à R-LWE pour M-LWE [Reg05, LPR10] et nous construisons les réductions correspondantes
pour montrer la difficulté de ces deux problèmes. Nous montrons aussi que la difficulté de
M-LWE (et donc de R-LWE) ne dépend pas de la forme arithmétique de q, alors que la réduction
existante [LPR10] pour R-LWE nécessitait un modulo q premier et congru à 1 modulo 2n.

• [LS] Adeline Langlois et Damien Stehlé. Worst-case to Average-case Reductions for Module
Lattices. Accepté à Designs, Codes and Cryptography. Springer.

Construction de primitives
Je me suis intéressée à deux primitives cryptographiques, les signatures de groupe et les applications
multilinéaires cryptographiques.

Les signatures de groupe permettent à tous les membres d’un groupe d’authentifier un message,
de façon anonyme, au nom du groupe. Une autorité, qui génère les clés, peut aussi retrouver le
membre du groupe qui a signé le message en cas de conflit ou d’utilisation malhonnête. Chaque
membre du groupe possède une clé privée, et il y a une seule clé publique qui est reliée au
groupe. L’autorité possède de plus une clé secrète maîtresse qui permet de tracer les utilisateurs.
Les deux signatures de groupe reposant sur les réseaux Euclidiens qui pré-existaient à mes
travaux [GKV10, CNR12] ont des tailles de clés et de signature linéaires en le nombre de membres
du groupe. Contrairement à des constructions reposant sur les couplages dans les courbes
elliptiques, où l’on trouve des signatures de groupe de taille logarithmique en le nombre de
membres du groupe [BW07, Gro07]. Dans un travail commun avec Fabien Laguillaumie, Benoît
Libert et Damien Stehlé, nous construisons la première signature de groupe reposant sur les
réseaux Euclidiens qui admet une taille de signature logarithmique en le nombre d’utilisateurs
du groupe. À la suite de ce travail, et en commun avec San Ling, Khoa Nguyen et Huaxiong
Wang, nous construisons une signature de groupe de même complexité mais avec une autre
fonctionnalité qui est la révocation. La révocation permet d’exclure un membre du groupe sans
avoir à réinitialiser tout le système. La sécurité de la première construction repose sur la difficulté
des problèmes SIS et LWE, et celle de la seconde sur la difficulté du problème SIS uniquement.

• [LLLS13] Fabien Laguillaumie, Adeline Langlois, Benoît Libert et Damien Stehlé. Lattice-based
Group Signature with Logarithmic Signature Size. ASIACRYPT (2), volume 8270 de LNCS,
pages 41-61. Springer, 2013.

• [LLNW14] Adeline Langlois, San Ling, Khoa Nguyen et Huaxiong Wang. Lattice-based Group
Signature with Verifier Local Revocation. Public Key Cryptography, volume 8383 de LNCS,
pages 345-361. Springer, 2014.

Construire des applications multilinéaires cryptographiques a été un problème ouvert pendant
de nombreuses années, en particulier depuis le résultat de Boneh et Silverberg [BS03] qui donne
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des applications à ces primitives. Ils décrivent par exemple un protocole non-interactif d’échange
de clés entre N utilsateurs (où N > 3) qui généralise celui de Diffie-Hellman [DH76]. En 2013,
Garg, Gentry et Halevi [GGH13a] ont proposé la première approximation d’une application
multilinéaire cryptographique qu’ils ont appelée un schéma de codage à niveaux (graded encoding
scheme). À partir de là, le protocole d’échange de clés devient possible pour un grand nombre
d’utilisateurs, mais sa sécurité n’est pas prouvée, elle repose sur l’analyse de la meilleure attaque
connue (qui revient à résoudre une variante de SVP dans des réseaux idéaux). Ma contribution
pendant cette thèse, en commun avec Damien Stehlé et Ron Steinfeld, porte sur l’amélioration
du schéma de codage à niveaux proposé par [GGH13a]. Nous avons, d’une part, analysé la
sécurité du processus de re-randomisation de ce schéma. Ce processus est utilisé à chaque étape
d’encodage, pour s’assurer qu’il n’y a pas de corrélation entre l’élément encodé et celui qui a
permis de l’encoder. Cette analyse nous a permis d’améliorer la taille des paramètres, en utilisant
notamment la divergence de Rényi, au lieu de la distance statistique utilisée classiquement pour
étudier la distance entre deux distributions. D’autre part, nous avons démontré un nouveau
Leftover Hash Lemma. Cet outil classique en cryptographie permet par exemple d’extraire de
l’aléa uniformément distribué à partir d’une mauvaise source d’aléa. Ici nous l’utilisons sur des
distributions Gaussiennes discrètes et l’aléa uniforme est lui-même une Gaussienne discrète. Notre
résultat adapte celui de [AGHS13] à certains anneaux de polynômes (les mêmes que ceux utilisés
dans les variantes structurées R-SIS et R-LWE). Ces deux contributions nous permettent de
rendre la construction d’origine plus efficace.

• [LSS14] Adeline Langlois, Damien Stehlé et Ron Steinfeld. GGHLite: More Efficient Multilinear
Maps from Ideal Lattices. EUROCRYPT 2014, volume 8441 de LNCS, pages 239-256. Springer,
2014.

Autre contribution
Durant ma thèse, j’ai aussi participé à l’écriture d’un chapitre de livre, en commun avec Fabien
Laguillaumie et Damien Stehlé, intitulé « Chiffrement avancé à partir du problème Learning with
Errors ». Ce chapitre présente le problème LWE, et propose une introduction aux schémas de
chiffrements avancés en s’appuyant sur ceux construits en cryptographie reposant sur les réseaux
euclidiens, et dont la sécurité repose sur LWE. En particulier nous décrivons les schémas de Regev
et Dual-Regev [Reg05, GPV08], le schéma de chiffrement reposant sur l’identité de [CHKP10], et
le schéma de chiffrement par attributs de [GVW13].

• [LLS14] Fabien Laguillaumie, Adeline Langlois et Damien Stehlé. Chiffrement avancé à partir du
problème Learning With Errors. Chapitre du livre Informatique Mathématique une photographie
en 2014, éditeur Sylvain Peyronnet, pages 179-225. Presses Universitaires de Perpignan, 2014.
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Presentation of my contributions

Lattice-based cryptography

Lattice-based cryptography is a branch of cryptography exploiting the presumed hardness of lattice
problems. Its main advantages are its simplicity, efficiency, and apparent security against quantum
computers. Quantum computers are an important concern in cryptography since Shor [Sho97]
solved problems serving as security foundation for many primitives, as the factorization of two
large prime, that we can not solve efficiently with a classical computer. But perhaps the most
appealing aspect is that lattice-based cryptographic protocols often enjoy very strong security
proofs based on the hardness of worst-case problems. Moreover, lattice-based cryptography
allows to construct a wide range of primitives, from the basic ones (for example: encryption
schemes [HPS98, Reg05, GPV08, PVW08, LP11], signatures [GGH97, GPV08, LM08, Lyu09,
Lyu12, GLP12, DDLL13], hash functions [Ajt96, GGH96, Mic02a, PR06, LM06, LM08, Lyu08]
...) to the most advanced ones (identity-based encryption [GPV08, CHKP10, ABB10a, ABB10b],
attribute-based encryption [GVW13], fully homomorphic encryption [Gen09, BV11, BGV12,
Bra12], cryptographic multilinear maps [GGH13a, CLT13] and programs obfuscation [GGH+13b]).

An Euclidean lattice is the set of all integer linear combinations of some n linearly independent
vectors belonging to a euclidean space, that we call a basis B. An example is given Figure 2 for
n = 2.
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b2

Figure 2: Example of a lattice in dimension 2.

There are many algorithmic problems related to lattices. The most classical ones are the
Shortest Vector Problem (SVP), and the Closest Vector Problem (CVP). Given a basis of a lattice,
SVP asks to find a shortest non-zero vector of the lattice. The CVP problem takes also as input a
target vector t ∈ Rn, and asks to find one of the closest vectors of the target. Those two problems
are easy to solve in dimension 2, but very hard in high dimension. They are NP-hard (classically
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for CVP, under randomized reduction for SVP [vEB81, Mic98, BS99]) And they seem still hard
to solve even with an approximation factor γ, at least as long as γ remains polynomial in the
dimension of the lattice. For example for SVP, instead of looking for one of the shortest non-zero
vectors of the lattice, the goal is to find a vector of norm which is at most γ times the norm
of the shortest vector of the lattice. SVP and CVP also have many variants, and the security
of the cryptographic primitives is often based on one of these variants. In particular we will
consider the Shortest Independent Vectors Problem (SIVP), where the goal is to find n linearly
independent vectors in an n-dimensional lattice, which have the shortest norm possible. Finally,
a standard and well accepted conjecture is to assume that there is no polynomial time algorithm
that achieves an approximation factor that is polynomial in n for any of these problems, even
using quantum computing [MR09]. This conjecture is supported by years of study of algorithms
to solve those problems, which keep a complexity exponential in the dimension for a polynomial
approximation factor [LLL82, Sch87, AKS01, GN08].

The security of the cryptographic primitive is proven from the hardness of those problems.
Typically the possible attacks against the primitive will be modelled by a problem to solve. If an
attacker is able to solve this problem, then it will be able to break the security of the primitive,
on the other hand if one can show that this problem is not possible to solve in a reasonable time,
then the primitive is secure. For each sort of primitive, there exist different levels of security
modelled by different problems. To guaranty the security, we show that the problem, on which is
based the attack, is at least as hard to solve as a hard problem, typically a variant of SVP. This
is called a reduction. Note that there also exist constructions for which the security does not rely
on reductions from hard lattice problems. For example, this is the case of the NTRU encryption
scheme [HPS98] (the security of one of its variant has recently be proven by [SS13]), and the
N -party one round Diffie-Hellman key exchange constructed from cryptographic multilinear
maps [GGH13a]. In both cases, the security is conjectured, based on the study of all the best
known attacks (which themselves consist of solving a variant of SVP).

To construct the security reductions, two main problems serve as the foundation of numerous
lattice-based cryptographic protocols. The first one, introduced by Ajtai in 1996 [Ajt96], is the
Small Integer Solution problem (SIS): For parameters n, m and q positive integers, the problem
is to find a short non-zero solution z ∈ Zm to the homogeneous linear system zTA = 0 mod q
for uniformly random A ∈ Zm×nq . The SIS problem is used for example to construct signature
schemes [GPV08, CHKP10, Boy10] and hash functions [Ajt96]. The second one, introduced by
Regev in 2005 [Reg05], is the Learning With Errors problem (LWE). The search version of LWE
is as follows: For parameters n and q positive integers and χ a probability density function
on Zn, the problem is to find s, given arbitrarily many independent pairs (a, 〈a, s〉 + e) for a
vector a ∈ Znq chosen uniformly at random, and e sampled from χ. The decision counterpart
of LWE consists in distinguishing between arbitrarily many independent pairs (a, 〈a, s〉 + e)
sampled as in the search version and the same number of uniformly random and independent
pairs. The LWE problem is used to construct encryption schemes and variants with advanced
functionalities [Reg05, GPV08, BV11, GVW13]. For all those schemes, the security is proven
by providing a reduction from SIS or LWE to the possible attacks. The hardness of those two
problems is then essential in lattice-based cryptography. To show this hardness, we use particular
reductions called “worst-case to average-case” reductions. An average-case problem (as SIS or
LWE) is shown to be at least as hard as the arbitrary instances of a variant of SVP (the worst-case
problem) which is presumed difficult. Note here that a worst-case problem needs every instance
to be solved (e.g., with non-negligible probability over the internal randomness of the algorithm),
whereas an average-case problem only requires some instances (a non-negligible proportion) to be
solved. Ajtai [Ajt96] proposed the first worst-case to average-case reduction for a lattice problem,
by providing a reduction from SIVPγ to SIS. Later, Regev [Reg05, Reg09] showed the hardness
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of the LWE problem by describing a (quantum) reduction from SIVPγ to LWE. Cryptographic
protocols relying on SIS or LWE therefore enjoy the property of being provably as secure as a
worst-case problem which is strongly suspected of being extremely hard. However, on the other
hand, the cryptographic applications of SIS and LWE are inherently inefficient due to the size of
the associated key (or public data), which typically consists of the matrix A.

To circumvent this inherent inefficiency, Micciancio [Mic02a, Mic07] — inspired from the
efficient NTRU encryption scheme [HPS98] that can itself be interpreted in terms of lattices —
initiated an approach that consists in changing the SIS and LWE problems to variants involving
structured matrices. In these variants, the random matrixA is replaced by one with a specific block-
Toeplitz structure, thus allowing for more compact keys and more efficient algorithms. The problem
considered by Micciancio in [Mic07] was later replaced by a more powerful variant [LM06, PR06],
now commonly referred to as Small Integer Solution problem over Rings, or R-SIS (it was initially
called Ideal-SIS). A similar adaptation for LWE, called R-LWE, was introduced by Lyubashevsky
et al. [LPR10] (see also [SSTX09]). Similarly to SIS and LWE, these problems admit reductions
from worst-case lattice problems [LM06, PR06, LPR10], but, however, the corresponding worst-
case problem is now SIVPγ restricted to ideal lattices (which correspond to ideals of the ring of
integers of a number field corresponding to the specific matrix structure). The latter problem is
denoted Id-SIVPγ .

Contributions

During my three years of PhD, I worked on two main aspects of cryptography: the security
foundations, by studying the hardness of LWE and variants of SIS and LWE, and the primitive
constructions, in particular group signatures and cryptographic multilinear maps.

Security foundations
The hardness of the SIS and LWE problems is fundamental in lattice-based cryptography as
most of the recent schemes are based on them. In 2005, Regev provided a quantum worst-case
to average-case reduction from a standard lattice problem to prove the hardness of LWE. This
reduction uses quantum computations in addition to classical ones. In the unfortunate event that
we find in the future an efficient quantum algorithm to solve lattice problems, this reduction will
reduce LWE to an easy problem, but it could still be classically hard. In 2009, Peikert [Pei09]
provided the first classical reduction to show the hardness of LWE, but his reduction only worked
for an exponential modulus q, and most of the cryptographic applications are instantiated with
a polynomial modulus. In a joint work with Zvika Brakerski, Chris Peikert, Oded Regev and
Damien Stehlé, I showed that LWE (in dimension n) is at least as hard as standard worst-case
lattice problems (in dimension '

√
n), even with polynomial modulus q. We also showed that

the hardness of LWE is a function of n log q.

• [BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev and Damien Stehlé.
Classical Hardness of Learning with Errors. STOC, pages 575-584. ACM, 2013.

The efficiencies of the cryptographic schemes can be drastically improved by switching the
hardness assumptions to the more compact R-SIS [PR06, LM06] and R-LWE [LPR10] problems
(over rings). However, this change of hardness assumptions comes along with a possible security
weakening: SIS and LWE are known to be at least as hard as standard (worst-case) problems on
euclidean lattices, whereas R-SIS and R-LWE are only known to be at least as as hard as their
restrictions to special classes of ideal lattices. In an other work with Damien Stehlé, we studied
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the hardness of two variants: the M-SIS and M-LWE problems (over modules), which bridge SIS
with R-SIS, and LWE with R-LWE, respectively. We proved that these average-case problems
are at least as hard as standard lattice problems restricted to module lattices (which themselves
bridge arbitrary and ideal lattices). We also generalized one of the reductions of the work on
LWE to show that the R-LWE problem is hard independently of the arithmetic shape of the
modulus q. Previously, this problem was only shown to be hard for some specific moduli.

• [LS] Adeline Langlois and Damien Stehlé. Worst-case to Average-case Reductions for Module
Lattices. Accepted to Designs, Codes and Cryptography. Springer, 2014.

Cryptographic constructions
My second research topic in lattice-based cryptography was the design of lattice-based group
signatures. Group signatures are cryptographic primitives where users can anonymously sign
messages in the name of a population they belong to. In 2010, Gordon et al. [GKV10] suggested
the first realization of group signatures based on lattice assumptions in the random oracle model.
A significant drawback of their scheme is its linear signature size in the cardinality N of the
group. In a work with Fabien Laguillaumie, Benoît Libert and Damien Stehlé, we proposed the
first lattice-based group signature schemes where the signature and public key sizes are essentially
logarithmic in N (for any fixed security level). The security of our scheme is proved in the
random oracle model under the SIS and LWE assumptions. In an other work with San Ling,
Khoa Nguyen and Huaxion Wang, we introduced the first-lattice based group signature also with
logarithmic signature size but enjoying another functionality, verifier local revocation (VLR). In
the random oracle model, this scheme is proved to be secure based on the hardness of the SIS
problem. Support of membership revocation is a desirable functionality for any group signature
scheme, and prior to our work, all the VLR group signatures operated in the bilinear map setting.

• [LLLS13] Fabien Laguillaumie, Adeline Langlois, Benoît Libert and Damien Stehlé. Lattice-
based Group Signature with Logarithmic Signature Size. ASIACRYPT (2), volume 8270 of
LNCS, pages 41-61. Springer, 2013.

• [LLNW14] Adeline Langlois, San Ling, Khoa Nguyen and Huaxiong Wang. Lattice-based
Group Signature with Verifier Local Revocation. Public Key Cryptography, volume 8383 of
LNCS, pages 345-361. Springer, 2014.

Finally, in a work with Damien Stehlé and Ron Steinfeld, we studied the GGH Graded
Encoding Scheme introduced by Garg, Gentry and Halevi [GGH13a] in 2013. The GGH scheme,
based on ideal lattices, is the first plausible approximation to a cryptographic multilinear map.
Using the security analysis the authors provided, the scheme requires very large parameters to
provide security for its underlying “encoding re-randomization” process. This process is important
in the scheme as it is used each time an element is encoded, it avoids the correlation between the
encoded element and the element used to construct it. The main contributions of our work were to
formalize, simplify and improve the security analysis of the re-randomization process in the GGH
construction. My co-authors and I applied these results in a new construction called GGHLite
that enjoys improved efficiency. The first improvement is obtained by using the Rényi divergence
instead of the conventional statistical distance as a measure of distance between distributions in
the security reduction. The second improvement is to reduce the number of randomizers needed
in the scheme. These two contributions allows to decrease the bit size of the public parameters
from O(λ5 log λ) for the GGH scheme to O(λ log2 λ) in GGHLite, with respect to the security
parameter λ (for a constant multilinearity parameter).
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• [LSS14] Adeline Langlois, Damien Stehlé and Ron Steinfeld. GGHLite: More Efficient Multi-
linear Maps from Ideal Lattices. EUROCRYPT 2014, volume 8441 of LNCS, pages 239-256.
Springer, 2014.

Other contribution
During my PhD, I also wrote a book chapter in French with Fabien Laguillaumie and Damien
Stehlé, entitled Chiffrement avancé à partir du problème Learning with Errors (Advanced en-
cryption from the Learning with Errors problem). This chapter introduces the LWE problem
and several advances variants of encryption scheme. We describe in particular Regev and Dual-
Regev encryption schemes [Reg05, GPV08], the identity-based encryption of [CHKP10] and the
attribute-based encryption of [GVW13].

• [LLS14] Fabien Laguillaumie, Adeline Langlois et Damien Stehlé. Chiffrement avancé à partir du
problème Learning With Errors. Chapitre du livre Informatique Mathématique une photographie
en 2014, éditeur Sylvain Peyronnet, pages 179-225. Presses Universitaires de Perpignan, 2014.
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Notations

Z the ring of integers
R the field of real numbers,R+ for the positive ones
Zq the ring of integers modulo q, for an integer q
[·]q (or mod q) corresponding operations are performed modulo q

K a cyclotomic number field (for example the polynomial ring Q[X]/(xn + 1) for n = 2k)
R the ring of integers of K (for example Z[X]/(xn + 1) for n = 2k)
Rq the ring R/qR, for an integer q
(S) the ideal of R generated by the set S
‖g‖ the norm of the coefficient vectors of g ∈ K
[·]g all operations are performed modulo g, for g ∈ R
MSB`(z) ∈ {0, 1}`·n, the ` most significant bits of each of the n coefficients of z ∈ R,

concatenated in a single bitstring

T the torus R/Z, i.e., the additive group of reals modulo 1
Tq its cyclic subgroup of order q, i.e., the subgroup given by {0, 1/q, . . . , (q − 1)/q}

x column vectors are denoted in bold
xi is the ith coordinate of x
(x1‖x2) denotes the column concatenation of two vectors, i.e., (x1‖x2) = (xT1 |xT2 )T
ei the vector with 1 in its ith coordinate and 0 in all its other coordinates
〈x,y〉 is the scalar product between two vectors x and y
‖x‖p the `p norm of the vector x
‖x‖ the Euclidean norm of the vector x
X matrices are denoted in bold
(X1|X2) denotes the concatenation of two matrices with the same number of rows
UX = {‖Xu‖ : u ∈ Rn, ‖u‖ = 1} for a rank-n matrix X ∈ Rm×n
σn(X) = inf(UX) the smallest singular value of X
σ1(X) = sup(UX) the largest singular value of X
‖Y‖ = maxi ‖yi‖ for a tuple of vectors Y = (yi)i
B̃ the Gram-Schmidt orthogonalisation of a full column rank matrix B
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Notations

We use standard Landau notations o(·), O(·), ω(·),Ω(·).

Õ(·) is used to hide the poly-logarithmic factors, i.e.,
f(n) = Õ(g(n)) = O(g(n) logc(n)) for some constant c

poly(n) a function is poly(n) if it is bounded by a polynomial in n
ω(f(n)) the set of functions growing faster than c · f(n) for any constant c
negl(n) a function f is negligible if f(n) = n−ω(1), i.e.,

it decreases faster than the inverse of any polynomial function
1− negl(n) a function is overwhelming if it is 1− negl(n)
2−Ω(n) such a function is said exponentially small in n

f(E) =
∑
x∈E f(x) for a function f over a countable domain E

∆(X,Y ) the statistical distance between the two statistical distributions X and Y
R(X‖Y ) the Rényi divergence between the two statistical distributions X and Y
U(E) the uniform distribution over a finite set E
Ds,c the continuous Gaussian distribution of parameter s and center c
DΛ,s,c the discrete Gaussian distribution of support Λ, parameter s and center c
Ds, DΛ,s we omit the center if c = 0
←↩ x←↩ D means that the element x is sampled from the distribution D

log the decimal logarithm function
ln the binary logarithm function

1λ to give a parameter λ as input in unary of an algorithm

PPT Probabilistic Polynomial Time
ROM Random Oracle Model

xx



Part One

An Introduction to Lattice-based
Cryptography

In this first part of the thesis, we introduce lattice-based cryptography more in details. We
first give preliminaries in Chapter 1: we recall statistical notions used in cryptography as the
statistical distance, the Rényi divergence and the leftover hash lemma. We give some reminders
about algebraic number theory that we use in the Ring/Module versions of SIS and LWE. And
we introduce lattices, computational problems on lattices and Gaussian distributions (also on
lattices). In Chapter 2, we define formally the SIS and LWE problems and recall the existing
hardness results concerning those problems. Finally in Chapter 3, we describe cryptographic
primitives based on SIS and LWE. In particular we describe two encryption schemes and three
signature schemes that we will use further during the description of our group signatures. We
also recall in this chapter the notion of trapdoor for lattices.
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Chapter 1

Preliminaries

In this chapter, we recall the preliminaries needed for this thesis. We start with some statistical
notions and with the Leftover Hash Lemma. In Section 1.2, we recall a few facts on algebraic
number theory in the special case we use in Chapters 5 and 10. In Section 1.3, we introduce the
notion of lattice, and the computational problems used in lattice-based cryptography. Finally, in
Section 1.4, we define continuous and discrete Gaussian distributions, we give a a result of an
exact Gaussian sample published in [BLP+13] and then, we recall a selection of properties on
Gaussian.

1.1 Statistical notions

We recall several notions of closeness between two distributions.

1.1.1 Entropy
The Shannon Entropy is a measure of the quantity of information contained in a random variable.

Definition 1.1 (Shannon Entropy). Let P be a distribution over a common countable set D.
The Shannon Entropy H of P is defined as:

H(P ) = −
∑
d∈D

P (d) logP (d).

The min-entropy measures the entropy of the best possible value of the random variable.

Definition 1.2 (Min-entropy). Let P be a distribution over a common countable set D. The
min-entropy H∞ of P is defined as:

H∞(P ) = −max
d∈D

logP (d).

1.1.2 Statistical distance
For two probability distributions P,Q over some discrete domain, we define their statistical
distance as:

∆(P,Q) = 1
2
∑
d∈D

|P (d)−Q(d)|,

3



1. Preliminaries

and extend this to continuous distributions in the obvious way. We say that two sequences (Pn)n,
(Qn)n of distributions indexed by a variable n are negligibly close if ∆(Pn, Qn) is negligible in n.

We recall the following fact (see, e.g., [AD87, Eq. (2.3)] for a proof).

Lemma 1.3. If P and Q are two probability distributions such that P (d) ≥ (1− ε)Q(d) holds
for all d, then the statistical distance between P and Q is at most ε.

1.1.3 Indistinguishability
A distinguishing problem P is defined by two distributions P0 and P1, and a solution to the
problem is the ability to distinguish between these distributions. The advantage on P of an
algorithm A with binary output is defined as

Adv[A] = |Pr[A(P0) = 1]− Pr[A(P1) = 1]| .

If there is no algorithm A such that Adv[A] is non-negligible in the dimension of the problem,
then we say that the two distributions P0 and P1 are computationally indistinguishable. If
the statistical distance ∆(P0, P1) is a function negligible in the dimension, then we say that
the two distributions P0 and P1 are statistically indistinguishable. Note that the statistical
indistinguishability is stronger than the computational one.

A reduction from a problem P to a problem Q is an efficient (i.e., polynomial-time) algo-
rithm AO that solves P given access to an oracle O that solves Q. Most of the reductions that
we will consider are what we call “transformation reductions:” these reductions perform some
transformation to the input and then apply the oracle to the output of the transformation.

1.1.4 Rényi divergence
Another way to measure closeness between distributions is the Rényi divergence. For convenience,
our definition of the Rényi divergence [R6́1, EH12] is the exponential of the usual definition used
in information theory [EH12], and coincides with a discrete version of the quantity R defined for
continuous density functions in [LPR13, Claim 5.11].

For any two continuous probability density functions P,Q : Rn → R≥0 such that Supp(P ) ⊂
Supp(Q), we define the RD of order α 6= 1 by:

R(P‖Q) =
∫
Rn

P (x)2

Q(x) dx.

For any two discrete probability distributions P and Q such that Supp(P ) ⊆ Supp(Q) over a
domain X and α > 1, we define the Rényi Divergence of orders α and ∞ by

Rα(P‖Q) =
(∑
x∈X

P (x)α
Q(x)α−1

) 1
α−1

and R∞(P‖Q) = max
x∈X

P (x)
Q(x) ,

with the convention that the fraction is zero when both numerator and denominator are zero.
A convenient choice for computations (as also used in [LPR13]) is α = 2, in which case we
omit α. Note that Rα(P‖Q)α−1 =

∑
x P (x) · (P (x)/Q(x))α−1 ≤ R∞(P‖Q)α−1. We list several

properties of the Rényi divergence that can be considered the multiplicative analogues of those of
the statistical distance.

Lemma 1.4. Let P1, P2, P3 and Q1, Q2, Q3 denote discrete distributions on a domain X and let
α ∈ (1,∞]. Then the following properties hold:
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• Log. Positivity: Rα(P1‖Q1) ≥ Rα(P1‖P1) = 1.

• Data Processing Inequality: Rα(P f1 ‖Q
f
1 ) ≤ Rα(P1‖Q1) for any function f , where P f1 (resp.

Qf1) denotes the distribution of f(y) induced by sampling y ←↩ P1 (resp. y ←↩ Q1).

• Multiplicativity: Let P and Q denote any two distributions of a pair of random variables
(Y1, Y2) on X×X. For i ∈ {1, 2}, assume Pi (resp. Qi) is the marginal distribution of Yi under
P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote the conditional distribution of Y2 given
that Y1 = y1. Then we have:

– Rα(P‖Q) = Rα(P1‖Q1) ·Rα(P2‖Q2) if Y1 and Y2 are independent.
– Rα(P‖Q) ≤ R∞(P1‖Q1) ·maxy1∈X Rα(P2|1(·|y1)‖Q2|1(·|y1)).

• Weak Triangle Inequality: We have:

Rα(P1‖P3) ≤
{

Rα(P1‖P2) ·R∞(P2‖P3),
R∞(P1‖P2) α

α−1 ·Rα(P2‖P3).

• R∞ Triangle Inequality: If R∞(P1‖P2) and R∞(P2‖P3) are defined, then

R∞(P1‖P3) ≤ R∞(P1‖P2) ·R∞(P2‖P3).

• Probability Preservation: Let A ⊆ X be an arbitrary event. Then

Q1(A) ≥ P1(A) α
α−1 /Rα(P1‖Q1).

Proof. The log. positivity and data processing inequalities are proved in [EH12, Th. 8, Th. 9].
For multiplicativity, we have

Rα(P‖Q)α−1 =
∑
x1,x2

(P1(x1) · P2|1(x2|x1))α

(Q1(x1) ·Q2|1(x2|x1))α−1 =
∑
x1

P1(x1)α
Q1(x)α−1 ·Rα(P2|1(·|x1)‖Q2|1(·|x1))α−1.

If X1 and X2 are independent, we have P2|1(x2|x1) = P2(x2) and Q2|1(x2|x1) = Q2(x2) for all
x1, and the result follows. More generally, since Rα(P‖Q)α−1 is the expected value of f(x1) =
P1(x1)α−1

Q1(x)α−1 ·Rα(P2|1(·|x1)‖Q2|1(·|x1))α−1 over x1 sampled from P1, it follows that Rα(P‖Q)α−1 ≤
maxx1 f(x1), which gives the second multiplicativity property.

For the first weak triangle inequality, we have

Rα(P1‖P3)α−1 =
∑
x

P1(x)α
P3(x)α−1 =

∑
x

P1(x)α
P2(x)α−1 ·

P2(x)α−1

P3(x)α−1 ≤

(∑
x

P1(x)α
P2(x)α−1

)
·max

x

P2(x)α−1

P3(x)α−1 ,

which gives the desired result. Similarly, for the second weak triangle inequality,

Rα(P1‖P3)α−1 =
∑
x

P1(x)α
P3(x)α−1 =

∑
x

P1(x)α
P2(x)α ·

P2(x)α
P3(x)α−1 ≤

(
max
x

P1(x)α
P2(x)α

)
·
∑
x

P2(x)α
P3(x)α−1 ,

as required. For the R∞ triangle inequality, we have

R∞(P1‖P3) = max
x

P1(x)
P3(x) = max

x

P1(x)
P2(x) ·

P2(x)
P3(x) ≤

(
max
x

P1(x)
P2(x)

)
·max

x

P2(x)
P3(x) .

5



1. Preliminaries

Finally, the probability preservation property is proved in [LPR13, Claim 5.11] for the case
α = 2 using the Cauchy-Schwarz inequality. The general case follows by replacing the latter
with the more general Holder inequality, which states that

∑
x∈A |f(x)g(x)| ≤ (

∑
x∈A f(x)p)1/p ·

(
∑
x∈A g(x)1/(1−1/p))1−1/p for real-valued functions f, g and p ≥ 1. Taking f(x) = P1(x)

Q1(x)1−1/α ,
g(x) = Q1(x)1−1/α, and p = α, we get P1(A) ≤ (

∑
x∈A

P (x)α
Q(x)α−1 )1/α · Q(A)1−1/α, and using∑

x∈A
P (x)α
Q(x)α−1 ≤ Rα(P1‖Q1)α−1 provides the result.

We note that the Rényi divergence does not satisfy the (multiplicative) triangle inequality
R(P1‖P3) ≤ R(P1‖P2) ·R(P2‖P3) in general (see [EH12]), but a weaker inequality holds if one of
the pairs of distributions has a bounded R∞ divergence, as shown above. We also observe that
R∞ does satisfy the triangle inequality.

1.1.5 Leftover Hash Lemma
The Leftover Hash Lemma [HILL99] is a very classic cryptographic tool. We recall here some
particular cases that we will use in this thesis.

Lemma 1.5. Let m,n, q ≥ 1 be integers such that m ≥ 4n log q and q prime, and let A ←↩
U(Zm×nq ) and r←↩ U({0, 1}m). Then the pair (A, rTA) is within statistical distance ≤ 2−n from
the uniform distribution on Zm×nq ×mZnq .

We recall the following lemma which is an immediate corollary of the leftover hash lemma.

Lemma 1.6. Let m,n, q ≥ 1 be integers, and ε > 0 be such that m ≥ n ln q + 2 ln(1/ε). For
H ←↩ U(Tm×nq ), z ←↩ U({0, 1}m), u ←↩ U(Tnq ), the distributions of (H, zTH) and (H,u) are
within statistical distance at most ε.

Here T = R/Z denote the torus, i.e., the additive group of reals modulo 1.

1.2 Algebraic number theory

In the following, we recall a few facts on elementary algebraic theory in this special case we
use in Chapter 5, 9 and 10. We refer the reader to [Mol99] and [LPR10, LPR13] for thorough
introductions to the topics covered in this section.

1.2.1 Number fields and cyclotomic fields
Every complex root of a polynomial g(X) ∈ Q[X] is an algebraic number. The minimal polynomial
of an algebraic number ξ is the unique irreducible monic polynomial f of minimal degree such
that ξ is one of its roots. An algebraic integer is an algebraic number whose minimal polynomial
belongs to Z[X]. Let ξ be an algebraic number, the number field K = Q(ξ) is a finite extension
of the rational number field Q. It is also an n-dimensional vector space over Q with basis
{1, ξ, . . . , ξn−1}, where n is the degree of f . We call n the degree of K. Let R be the set of the
algebraic integers belonging to K. This is a ring, called the ring of integers (or maximal order)
of K. If ξ is an algebraic integer, then Z[ξ] =

∑n
j=1 Z · ξj ⊆ R. In general, this inclusion can be

strict.
A cyclotomic field is a field K = Q(ξ) where ξ is a root of unity. If ξ is a primitive ν-th root

of unity, then it is a root of the ν-th cyclotomic polynomial Φν . The degree n = φ(ν) of Φν is
the degree of K (here φ(·) denotes Euler’s totient function). In the case of cyclotomic fields, we
have R = Z[ξ].
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1.2. Algebraic number theory

In this work, all number fields will be cyclotomic fields.

1.2.2 Complex embeddings
The canonical embeddings are the n ring homomorphisms σj : K → C that fix every element
of Q. In our particular case of cyclotomic fields, all n embeddings are complex: They are
defined by σj : ξ 7→ ξj for any j ∈ Z×ν . Note that if j is invertible modulo ν, then so is ν − j,
and σν−j = σj . For notational simplicity, we let J denote [ν/2]∩Z×ν . We call canonical embedding
vector the ring homomorphism σC : K → Cn defined as: σC(y) = (σj(y))j∈Z×ν , where addition
and multiplication in Cn are component-wise. Indeed, for any x, y ∈ K, we have that σC(x · y) is
the component-wise product of σC(x) and σC(y). By elementary linear algebra, we observe that
an element of K is fully specified by its canonical embedding vector.

The trace Tr : K → Q and the (algebraic) norm N : K → Q are defined as follows: Tr(x) =∑
j∈Z×ν σj(x) and N(x) =

∏
j∈Z×ν σj(x). For any x, y ∈ K we have Tr(x·y) =

∑
j∈Z×ν σj(x)·σj(y) =

〈σC(x), σC(y)〉 where 〈·, ·〉 is the canonical Hermitian product on Cn.

1.2.3 Space H
We use the following subspace of Cn, as in [LPR10]:

H = {(xj)j∈Z×ν ∈ Cn : ∀j ∈ J, xν−j = xj}.

Let hj = 1√
2 (ej + eν−j) and hν−j = i√

2 (ej − eν−j) for j ∈ J. The hj ’s form a basis of H as a
real vector space. An element x ∈ K can be represented according to the basis (hj)j : For x ∈ K,
we define σH(x) by σH(x) = (xj)j ∈ Rn such that σC(x) =

∑
j xj · hj . As σC(x) = (σj(x))j , we

have, for j ∈ J:[
xj
xν−j

]
= 1

2

[
1 1
−i i

] [
σj(x)
σν−j(x)

]
and

[
σj(x)
σν−j(x)

]
=
[
1 i
1 −i

] [
xj
xν−j

]
.

The addition in H is component wise. Let σH(x) = (xj)j and σH(y) = (yj)j , the multiplication
is given by σH(x · y) = (zj)j where, for j ∈ J:[

zj
zν−j

]
=
[
xj −xν−j
xν−j xj

] [
yj
yν−j

]
or
[
zj
zν−j

]
=
[
yj −yν−j
yν−j yj

] [
xj
xν−j

]
.

To ease the presentation, in Chapter 5 we identify elements of K with their σH embeddings.

1.2.4 Ideals
An (integral) ideal I of R is a non-zero additive subgroup of R that is closed under multiplication
by every element of R. The smallest ideal of R containing the set S is denoted by (S). The
quotient R/I is the set of the equivalence classes g + I of R modulo I. For any nonzero ideal,
the norm N (I) of the ideal is the number of elements of the quotient ring R/I. We have
N ((x)) = N (x), for all x ∈ K.

Let I and J be ideals of R. We define the product of two ideals by IJ = {
∑
i αiβi : αi ∈

I, βi ∈ J} and their sum by I + J = {α+ β : α ∈ I, β ∈ J}. An ideal I � R is prime if for any
ab ∈ I then a ∈ I or b ∈ I. Every ideal of R can be represented as a unique product of prime
ideals, and for a prime ideal I, the quotient ring R/I is the finite field of order N (I). A fractional
ideal I ⊆ K is a set such that dI ⊆ R is an (integral) ideal for a nonzero d ∈ R. The inverse of
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1. Preliminaries

a fractional I is defined by I−1 = {α ∈ K : αI ⊆ R} and is itself a fractional ideal. We have
II−1 = R. The dual of an ideal is defined as I∨ = {x ∈ K : Tr(xI) ⊆ Z}. We have I∨ = I−1 ·R∨.

In our setup of cyclotomic fields, if q is a prime integer, the prime ideal factorization of (q) ⊆ R
can be computed efficiently. In particular, if q = 1 mod ν, then (q) =

∏
j∈Z×ν qj where each qj if

a prime ideal with norm N (qj) = q. The field K has n automorphisms τj : K → K defined by
τj(ξ) = ξj (for j ∈ Z×ν ). As noted in [LPR10, Le. 2.16], the automorphism group of the {τj} acts
transitively on the set {qj}j .

1.2.5 An isomorphism of quotient rings
Lyubashevsky et al. [LPR10, Se. 2.3.9] used the Chinese Remainder Theorem to make explicit an
isomorphism between I/qI and R/qR for an arbitrary positive integer q, which we recall now.
Let Rq and R∨q respectively denote R/qR and R∨/qR∨.

Let t ∈ I be such that (t) + qI = I (such a t exists and can be found efficiently given I
and the prime ideal factorization of (q), see [LPR10, Le. 2.14]). The function θI : K → K
defined as θI(x) = t · x induces an isomorphism from Rq to I/qI. Moreover, this isomorphism
may be efficiently inverted using θ−1

I : I/qI → Rq defined by θ−1
I (y) = t−1 · y′ mod qR where

y′ = y mod qI and y′ ∈ (t). The function θI also induces an isomorphism from I∨/qI∨ to R∨q
that may be efficiently inverted using θ−1

I : R∨q → I∨/qI∨ with θ−1
I (y) = t−1 · y′ mod qR where

y′ = y mod qI∨ and y′ ∈ (t).

1.2.6 Modules
A subset M ⊆ Kd is an R-module if it is closed under addition and under multiplication by
elements of R. It is a finitely generated module if there exists a finite family (bk)k of vectors in Kd

such thatM =
∑
k R ·bk. In general, if the ring R is arbitrary, an R-module may not have a basis.

But here K is a number field, so R is a Dedekind domain, and we have the existence of so-called
pseudo-bases (see, e.g., [Coh00, Ch. 1]): For every module M , there exist (Ik)1≤k≤d′ nonzero
ideals of R and (bk)1≤k≤d′ linearly independent vectors of Kd′ such that M =

∑
1≤k≤d′ Ik · bk.

We say that [(Ik)k, (bk)k] is a pseudo-basis of M . The word pseudo-basis is used as the coefficient
ideals (Ik)k can be non-principal. The representation of the elements of M with respect to a
pseudo-basis is unique. Two pseudo-bases can generate the same module and then, they have the
same cardinality. The latter is called rank of the module. In this work, we will restrict ourselves
to full-rank modules, i.e., with d′ = d.

We define the dual of a module by M∨ = {x ∈ Kd,∀y ∈M : Tr(〈x,y〉) ∈ Z}, where 〈·, ·〉 is
the Hermitian product on Kd. We have the following property:

Lemma 1.7. If M =
∑d
k=1 Ik · bk, then M∨ =

∑d
k=1 I

∨
k · b

∨
k , where the b∨` ’s are defined by

〈bk, b
∨
` 〉 = 1 if k = ` and 〈bk, b

∨
` 〉 = 0 otherwise.

Proof. We first show that
∑d
k=1 I

∨
k · b

∨
k ⊆ M∨. Let x ∈

∑d
k=1 I

∨
k · b

∨
k . Then for each i there

exists xk ∈ I∨k such that x =
∑d
k=1 xk · b

∨
k . Let y =

∑d
k=1 yk · bk ∈ M . Then by linearity, we

have Tr(〈x,y〉) =
∑d
k=1 Tr(xkyk). For all i, we have xk ∈ I∨k and yk ∈ Ik, and thus Tr(xkyk) ∈ Z.

Therefore, we have Tr(〈x,y〉) ∈ Z and x ∈M∨.
We now show that M∨ ⊆

∑d
k=1 I

∨
k · b

∨
k . Let x ∈M∨ ⊆ Kd. We can write x =

∑d
k=1 xk · b

∨
k ,

for some xk’s in K. It suffices to show that xk ∈ I∨k . Let yk ∈ Ik be arbitrary. By linearity, we
have Tr(〈x, ykbk〉) = Tr(xkyk) ∈ Z. This implies that xk ∈ I∨k .

We generalize the isomorphism θI defined above to modules. Let M =
∑d
k=1 Ik · bk, f :

I1/qI1 × . . . × Id/qId → M/qM be such that f(x1, . . . , xn) =
∑d
k=1 xk · bk and g : M/qM →

8



1.3. Lattices

I1/qI1 × . . . × Id/qId be such that g(
∑d
k=1 xk · bk) = (x1, . . . , xn). The functions f and g are

ring isomorphisms and g = f−1. Let θI1 , . . . , θId be as described above. We define the functions
Θ and Θ−1 as follows: Θ = f ◦ (θI1 × . . .× θId) and Θ−1 = (θ−1

I1
× . . .× θ−1

Id
) ◦ g. The function Θ

induces an isomorphism from Rdq to M/qM with inverse Θ−1.

1.3 Lattices

In this section we recall the notion of Euclidean lattice and give some of their properties, we also
introduce the particular case of ideal and module lattices.

1.3.1 Definition
A euclidean lattice Λ ⊆ Rn is the set of all integer linear combinations

∑p
i=1 xibi of some

linearly independent vectors (bi)1≤i≤p ∈ Rn. We write L(B) for the lattice spanned by the basis
B = (bi)i≤p. We call p the dimension of the lattice. In this work, we will often restrict ourselves
to full-rank lattices, i.e., with p = n (except in Chapters 9 and 10).

The determinant det(Λ) is defined as
√

det(BTB), where B = (bi)i is any such basis of Λ.
We recall that for a set S = {s1, . . . , sn} ⊂ Rn of linearly independent vectors, we denote

by S̃ its Gram-Schmidt orthogonalization, in which ‖s̃i‖ ≤ ‖si‖ for all i. The following lemma
from [MG02] states that for any full-rank set of vectors in a lattice, one can efficiently find a basis
of this lattice, without increasing the norm of the Gram-Schmidt vectors.

Lemma 1.8 ([MG02, Lemma 7.1]). There is a deterministic polynomial-time algorithm that,
given an arbitrary basis B of an n-dimensional lattice L(B) and a full-rank set of lattice vectors
S ⊂ L(B), outputs a basis T of L(B) such that ‖̃ti‖ ≤ ‖s̃i‖ for all 1 ≤ i ≤ n.

The minimum λ1(Λ) of a lattice Λ is the norm of any of its shortest nonzero vectors. More
generally, the ith successive minimum λi(Λ) is the smallest radius r such that Λ contains i linearly
independent vectors of norm at most r. The dual lattice of Λ ⊆ Rn is Λ∗ = {x ∈ Rn : ∀y ∈
Λ, 〈x,y〉 ∈ Z}. If Λ = L(B) then Λ∗ = L(B∗) with B∗ = B−T .

Lemma 1.9 (Minkowski’s second theorem). Let Λ be an n-dimensional lattice. Then:( ∏
1≤n

λi(Λ)
)1/n

≤
√
n det(Λ)1/n.

The following result links the determinants of a lattice and its orthogonal.

Lemma 1.10 ([NS97, Cor. 2]). Let Λ ⊆ Zn be a lattice, and let Λ⊥ = (Span(Λ))⊥
⋂
Zn denote

the orthogonal lattice of Λ. Then det(Λ⊥) ≤ det(Λ).

1.3.2 Ideal and module lattices
As σH is a group homomorphism from (K,+) to (Rn,+) and I an ideal of R, the set σH(I) is a
lattice. We call it ideal lattice with respect to K. To ease the presentation, we often identify I
and σH(I).

We define module lattices similarly. The map (σH , . . . , σH) is an embedding from Kd

to RN , with N = nd, and M ⊆ Kd a module of R. By abuse of notation, we also call
it σH . The set σH(M) is a module lattice. Note that if M is a rank d module and if K has
degree n, then the corresponding module lattice has dimension N = nd. For any x ∈ Kd, we

9
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define ‖x‖ = (
∑d
k=1

∑
j∈Z×ν |σj(xk)|2)1/2. We also define ‖x‖∞ = maxj,k |σj(xk)|, ‖x‖2,∞ =

maxj(
∑
k |σj(xk)|2)1/2 and ‖x‖∞,2 = maxk(

∑
j |σj(xk)|2)1/2.

When a module is given as input of a problem, we consider that we give a lattice basis of the
corresponding module lattice. Note that it is equivalent to give a basis of the module lattice and
a pseudo-basis of the module because from the first representation, the second representation
is computable in polynomial time [BP91, Coh00]. All asymptotic statements involving modules
(including hardness results) will be given for N growing to infinity.

1.3.3 Computational problems
Shortest and Closest Vector Problems. The Shortest Vector Problem (SVP) and the Closest
Vector Problem (CVP) are the two fundamentals problems over lattices. Given an n-dimensional
lattice, represented by one of its base, and a target vector t ∈ Rn the goal of SVP is to find a
shortest non-zero vector in this lattice. The goal of CVP is to find a closest vector of the lattice
to the target vector. We consider the version of these problem with the euclidean norm (unless
another norm is specified).

Definition 1.11 (Shortest Vector Problem and Closest Vector Problem). We recall the definitions
of the following problems:

SVP: Given a lattice basis B, find a non-zero vector s ∈ L(B) such that ‖s‖ = λ1(L(B)).

Approx SVPγ : Let γ ≥ 1 be a function of the dimension n. Given a lattice basis B, find a non-zero
vector s ∈ L(B) such that ‖s‖ ≤ γ · λ1(L(B)).

CVP: Given a lattice basisB, and a target vector t ∈ Rn, find a vector s ∈ L(B) minimizing ‖s−t‖.

Approx CVPγ Given a lattice basis B, and a target vector t ∈ Rn, find a vector s ∈ L(B) such
that ‖s− t‖ ≤ γ ·minx∈L(B) ‖x− t‖.

As shown in [GMSS99], the problem CVPγ is at least as hard as the problem SVPγ for any
approximation factor.

Definition 1.12 (Gap Shortest Vector Problem). We recall the definition of the following
problems:

GapSVP: Given a lattice basis B and a number d, decide if λ1(L(B)) ≤ d or λ1(L(B)) ≥ d.

GapSVPγ : Given a lattice basis B and a number d, decide if λ1(L(B)) ≤ d or λ1(L(B)) ≥ γ · d.

If λ1(L(B)) ∈ (d, γ · d), then the algorithm does not have to answer, or may answer something
wrong.

SIVP and GIVP. The Shortest Independent Vectors problem (SIVP) is a generalization of SVP,
where instead of finding one short vector, one has to find n linearly independent short vectors.

Definition 1.13 (Shortest Independent Vectors Problem). Let γ ≥ 1 be a function of the
dimension n. The SIVPγ is as follows: Given a lattice basis B, find n = dim(L(B)) linearly
independent vectors s1, . . . , sn ∈ L(B) such that maxi ‖si‖ ≤ γ · λn(L(B)).

We consider the following generalization of SIVP.

10
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Definition 1.14 (Generalized Independent Vectors Problem). Let φ denote an arbitrary real-
valued function of a lattice. Let γ ≥ 1 be a function of the dimension n. The GIVPφγ is as follows:
Given a lattice basis B, find n = dim(L(B)) linearly independent vectors s1, . . . , sn ∈ L(B) such
that maxi ‖si‖ ≤ γ · φ(L(B)).

For φ = λn, we recover SIVPγ . We let Id-GIVP denote the restriction of GIVP to ideal
lattices. Similarly, we let Mod-GIVP denote the restriction of GIVP to module lattices.

Complexity of lattice problems. We refer to [Reg10b] for more details about the complexity
of solving the lattice problems. They are NP-hard for any approximation factor γ ≤ O(1)
(classically for CVP, under a randomized reduction for SVP, see [vEB81, Mic98, BS99]). The
currently best polynomial time algorithms [Sch87, GN08, HPS11] only solve those problems
with an approximation factor 2n log logn/ logn. On the other hand, it has been proven [HR07]
that there is no efficient algorithm that approximate lattice problems with an approximation
factor nc/ log logn for some constant c > 0, unless P=NP.

There is a gap between those two approximation factors, and the best known algorithms
(even quantum) for an approximation to within any polynomial factor γ all have exponential
complexities [MR09]. This motivates the following conjecture: There is no polynomial time
(quantum) algorithm that approximates lattice problems to within a polynomial factor. It
seems that we can even go further by saying that there is no sub-exponential time (quantum)
algorithm that approximate those problems to within polynomial factor. Those conjectures are
the foundation of lattice-based cryptography.

Intermediate problems and reductions. We now define intermediate problems on lattices, that
we will use further in Chapters 2 and 5. We also recall the principle of the reduction from GIVP
to these problems.

Definition 1.15. The Incremental Independent Vectors Decoding problem IncIVDφ
γ,g is as follows:

Given a tuple (B,S, t), where B is a basis of a full-rank lattice in Rn, S ⊂ L(B) is a full-rank
set of lattice vectors such that ‖S‖ ≥ γ · φ(L(B)), and t is a target point. The goal is to find a
lattice vector v ∈ L(B) such that ‖v− t‖ ≤ ‖S‖g .

This problem is a variant of the Incremental Guaranteed Distance Decoding problem, defined
in [MR07] as follows:

Definition 1.16. The Incremental Guaranteed Distance Decoding problem IncGDDφ
γ,g is as

follows: Given a tuple (B,S, t, r), where B is a basis of a full-rank lattice in Rn, S ⊂ L(B) is a
full-rank set of lattice vectors, and r is a real such that r > γ(n) · φ(L(B)). The goal is to find a
lattice vector v ∈ L(B) such that ‖v− t‖ ≤ ‖S‖g + r.

The goal of those two problems is to find a lattice vector within a certain distance from a
given target. In the two problems the distance is larger than γφ(L(B))

g , where φ is usually the
smoothing parameter of the lattice or its n-th minima.

The following intermediate result is proven in [Mic07].

Theorem 1.17. For any γ > 1 and any φ, there exists a reduction from GIVPφ8γ to IncGDDφγ,8.

Proof. We now give the sketch of the proof given by [MR07, Lemma 5.10].
Given a basis B, the goal is to solve GIVPφ8γ using a IncGDD oracle, i.e., to find n linearly

independent vectors S such that ‖S‖ ≤ 8γ · φ(L(B)). The process is iterative. Initially S = B,
then at each step:

11
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∗ Identify si as the the longest vector in S,
∗ Take t orthogonal to s1, . . . , si−1, si+1, . . . , sn (of length ‖S‖/2),
∗ Apply the IncGDD oracle to the instance (B,S, t, ‖S‖/8).
∗ If it fails, output S. Otherwise we replace si by the output u of the oracle, and repeat the
process.

Note that at each step, the vector u is at distance at most ‖S‖/4 from t, ‖u‖ ≤ 3‖S‖/4 and u is
linearly independent from the vectors s1, . . . , si−1, si+1, . . . , sn.

If the oracle fails, it must be that ‖S‖/8 ≤ γ ·φ(L(B)), then S is as required to solve the GIVP
problem. Moreover this algorithm terminates after a polynomial number of steps, as log

∏
i ‖si‖

decreases by a constant at each step, and is initially polynomial in the input size.

1.4 Gaussian measures

We start by recalling the definitions of continuous and discrete Gaussian functions over lattices
for different types of parameters. We then define the smoothing parameter which is used to
study discrete Gaussians. Finally, we give some tail bounds and properties about adding and
multiplying Gaussians.

1.4.1 Continuous Gaussian distributions
We will consider different types of Gaussian distributions.

Definition 1.18 (Spherical continuous Gaussian). For a vector c ∈ Rn and a real s > 0, the
Gaussian function is defined by ρs,c(x) = e−π‖

x−c
s ‖

2 , for all x ∈ Rn.
By normalizing the Gaussian function, we obtain the (spherical) continuous Gaussian proba-

bility distribution:

Ds,c(x) = ρs,c(x)
sn

= 1
sn
e−π‖

x−c
s ‖

2
,

of parameter s, centered in c.

Remark 1.19. For r = (r1, . . . , rn)T ∈ (R+)n, a sample from Dr,c over Rn is given by (Dri,ci)i.
We extend this definition to elliptical Gaussian distributions with respect to the axes (hi)i

defined in Section 1.2.3, the parameter of the Gaussian is now a vector.

Definition 1.20 (Elliptical continuous Gaussian [LPR10]). The elliptical Gaussian distributions
in the basis {hj}j∈Z×ν is defined as follows: For (rj)j∈Z×ν ∈ Rn such that rj = rν−j for all j ∈ J, a
sample x from Dr is given by σC(x) =

∑
j xj · hj , where each xj is independently chosen from

the Gaussian distribution Drj over R.

We define Ψ[α,α′] for 0 ≤ α < α′, as the set of Gaussian distributions Dr with α < ri ≤ α′,
for all i. We write Ψ≤α′ when α = 0.

We recall the distribution Υα used in [LPR10]. The gamma distribution Γ(2, 1) with shape
parameter 2 and scale parameter 1 has density t exp(−t) for t ≥ 0 and zero for t < 0. For α > 0,
a distribution sampled from Υα is an elliptical Gaussian distribution Dr whose parameters are
rj = rν−j = α

√
1 +
√
nxj , where the xj ’s for j ∈ J are chosen independently from Γ(2, 1). We

will use the following result on Γ(2, 1).

Lemma 1.21 ([LPR10, Claim 5.10]). Let P be the distribution Γ(2, 1)n and Q be the distribution
(Γ(2, 1)− z1)× . . .× (Γ(2, 1)− zn) for some 0 ≤ z1, . . . , zn ≤ 1/

√
n. Then for any measurable set

A ⊆ Rn, we have
∫
A
Q ≥ 1

poly(n) · (
∫
A
P )2 (i.e., R(P‖Q) ≤ poly(n)).
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Finally we define the ellipsoid continuous Gaussian distribution where the parameter of the
Gaussian is a non-singular matrix in S ∈ Rn×n of a rank-n matrix S ∈ Rm×n. In the two cases,
the symmetric matrix Σ = STS is definite positive, i.e., we have xΣx > 0 for all x ∈ Rn.

Definition 1.22 (Ellipsoid continuous Gaussian). For a rank-n matrix S ∈ Rm×n and a vector
c ∈ Rn, the ellipsoid Gaussian distribution with parameter S and center c is defined as:

∀x ∈ Rn, DS,c(x) = 1√
det (STS)

exp
(
−π(x− c)T (STS)−1(x− c)

)
.

This distribution may also be denoted by D√Σ,c with Σ = STS if the matrix S is seen as the
square root of Σ. If we let ρS,c be the associated Gaussian function. Note that

ρS,c(x) = exp
(
−π(x− c)TΣ−1(x− c)

)
= exp

(
−π‖(ST )†(x− c)‖

)
= exp

(
−π〈(ST )†(x− c), (ST )†(x− c)〉

)
,

where X† denotes the pseudo-inverse of X.

1.4.2 Discrete Gaussian distributions
Those continuous functions can be extended to any countable set A ⊆ Rn in the usual way:

ρs,c(A) =
∑
x∈A

ρs,c(x).

For a n-dimensional lattice Λ and a vector u ∈ Rn, we now define the discrete Gaussian distribution
as the discrete distribution with support on the coset Λ+u whose probability mass is proportional
to the Gaussian function.

Definition 1.23 (Discrete Gaussian). For all c ∈ Rn, s > 0 (resp. r ∈ Rn and S ∈ Rm×n) and
lattice Λ, the discrete Gaussian probability distribution with support Λ, center c and parameter s
(resp. r, S) is defined by:

∀x ∈ Λ, DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) .

(resp. x ∈ Λ, DΛ,r,c(x) = ρr,c(x)
ρr,c(Λ) and DΛ,S,c(x) = ρS,c(x)

ρS,c(Λ) ).

The distribution is the same as a continuous one, but all the sampled vectors belong to the
support Λ. Figure 1.1 is an example for Λ = Z.

Figure 1.1: Discrete Gaussian on Z.

As we will see further, the properties satisfied by continuous Gaussian distributions are often
satisfied by discrete Gaussian distributions.
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There exists an efficient procedure that samples within negligible statistical distance of any
(not too narrow) discrete Gaussian distribution ([GPV08, Theorem 4.1]; see also [Pei10]). In the
next theorem, proved in Section 1.4.3, we modify this sampler so that the output is distributed
exactly as a discrete Gaussian. This also allows us to sample from slightly narrower Gaussians.

Theorem 1.24 ([GPV08, Th. 4.1] and Lemmma 1.25). There is a probabilistic polynomial time
algorithm GPVSample that, given a basis B of an n-dimensional lattice Λ = L(B), a standard
deviation s ≥ ‖B̃‖ ·

√
logn, and a center c ∈ Rn, outputs a sample whose distribution is DΛ,s,c.

Here B̃ denotes the Gram-Schmidt orthogonalisation of B, and ‖B̃‖ is the length of the
longest vector in it. We recall that if B = [b1, · · · ,bn], then B̃ = [b̃1, · · · , b̃n] with b̃1 = b1 and
for all i = 2, · · · , n, the vector b̃i is the projection of bi orthogonal to span(b1, · · · ,bi−1).

1.4.3 Exact Gaussian sampler
Theorem 1.24 follows from the following lemma.

Lemma 1.25. There exists a PPT algorithm that takes as inputs a basis B of a lattice L ⊆ Zn
and a rational σ ≥ ‖B̃‖ · Ω(

√
logn), and outputs vectors b ∈ L with distribution DL,σ.

We now prove this lemma.

Proof. As in [GPV08], the proof consists of two parts. In the first we consider the one-dimensional
case, and in the second we use it recursively to sample from arbitrary lattices. Our one-dimensional
sampler is based on rejection sampling, just like the one in [GPV08]. Unlike [GPV08], we use the
continuous normal distribution as the source distribution which allows us to avoid truncation,
and as a result obtain an exact sample. Our second part uses the same recursive routine as
in [GPV08], but adds a rejection sampling step to it in order to take care of the deviation of its
output from the desired distribution.

The one-dimensional case. Here we show how to sample from the discrete Gaussian distribution
on arbitrary cosets of one-dimensional lattices. We use a standard rejection sampling procedure
(see, e.g. [Dev86, Page 117] for a very similar procedure).

By scaling, we can restrict without loss of generality to the lattice Z, i.e., we consider the
task of sampling from DZ+c,r for a given coset representative c ∈ [0, 1) and parameter r > 0.
The sampling procedure is as follows. Let Z0 =

∫∞
c
ρr(x)dx, and Z1 =

∫ c−1
−∞ ρr(x)dx. These

two numbers can be computed efficiently by expressing them in terms of the error function. Let
Z = Z0 + Z1 + ρr(c) + ρr(c− 1). The algorithm repeats the following until it outputs an answer:

• With probability ρr(c)/Z it outputs c;

• With probability ρr(c− 1)/Z it outputs c− 1;

• With probability Z0/Z it chooses x from the restriction of the continuous normal distribution
Dr to the interval [c,∞). Let y be the smallest element in Z + c that is larger than x. With
probability ρr(y)/ρr(x) output y, and otherwise repeat;

• With probability Z1/Z it chooses x from the restriction of the continuous normal distribution
Dr to the interval (−∞, c− 1]. Let y be the largest element in Z + c that is smaller than x.
With probability ρr(y)/ρr(x) output y, and otherwise repeat.
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Consider now one iteration of the procedure. The probability of outputting c is ρr(c)/Z, that
of outputting c− 1 is ρr(c− 1)/Z, that of outputting c+ k for some k ≥ 1 is

Z0

Z
· 1
Z0

∫ c+k

c+k−1
ρr(x) · ρr(c+ k)

ρr(x) dx = ρr(c+ k)
Z

,

and similarly, that of outputting c− 1− k for some k ≥ 1 is ρr(c− 1− k)/Z. From this it follows
immediately that conditioned on outputting something, the output distribution has support on
Z + c and probability mass function proportional to ρr, and is therefore the desired discrete
Gaussian distribution DZ+c,r. Moreover, the probability of outputting something is

ρr(Z + c)
Z

= ρr(Z + c)
Z0 + Z1 + ρr(c) + ρr(c− 1) ≥

ρr(Z + c)
ρr(Z + c) + ρr(c) + ρr(c− 1) ≥

1
2 .

Therefore at each iteration the procedure has probability of at least 1/2 to terminate. As a result,
the probability that the number of iterations is greater than t is at most 2−t, and in particular,
the expected number of iterations is at most 2.

The general case. For completeness, we start by recalling the SampleD procedure described
in [GPV08]. This is a recursive procedure that gets as input a basis B = (b1, . . . ,bn) of an
n-dimensional lattice Λ = L(B), a parameter r > 0, and a vector c ∈ Rn, and outputs a vector
in Λ + c whose distribution is close to that of DΛ+c,r. Let b̃1, . . . , b̃n be the Gram-Schmidt
orthogonalization of b1, . . . ,bn, and let b1, . . . ,bn be the normalized Gram-Schmidt vectors, i.e.,
bi = b̃i/‖b̃i‖. The procedure is the following.

1. Let cn ← c. For i← n, . . . , 1, do:

a) Choose vi from D‖b̃i‖Z+〈ci,bi〉,r
using the exact one-dimensional sampler.

b) Let ci−1 ← ci + (vi − 〈ci,bi〉) · bi/‖b̃i‖ − vibi.

2. Output v :=
∑n
i=1 vibi.

It is easy to verify that the procedure always outputs vectors in the coset Λ + c. Moreover,
the probability of outputting any v ∈ Λ + c is

n∏
i=1

ρr(vi)
ρr(‖b̃i‖Z + 〈ci,bi〉)

= ρr(v)∏n
i=1 ρr(‖b̃i‖Z + 〈ci,bi〉)

,

where ci are the values computed in the procedure when it outputs v. Notice that by Lemma 1.28
and our assumption on r, we have that r ≥ η1/(n+1)(‖b̃i‖Z) for all i. Therefore, by Lemma 1.31,
we have that for all c ∈ R,

ρr(‖b̃i‖Z + c) ∈
[
1− 2

n+ 2 , 1
]
ρr(‖b̃i‖Z).

In order to get an exact sample, we combine the above procedure with rejection sampling.
Namely, we apply SampleD to obtain some vector v. We then output v with probability∏n

i=1 ρr(‖b̃i‖Z + 〈ci,bi〉)∏n
i=1 ρr(‖b̃i‖Z)

∈
((

1− 2
n+ 2

)n
, 1
]
⊆ (e−2, 1], (1.1)
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and otherwise repeat. This probability can be efficiently computed, as we will show below. As a
result, in any given iteration the probability of outputting the vector v ∈ Λ + c is

ρr(v)∏n
i=1 ρr(‖b̃i‖Z)

.

Since the denominator is independent of v, we obtain that in any given iteration, conditioned
on outputting something, the output is distributed according to the desired distribution DΛ+c,r,
and therefore this is also the overall output distribution of our sampler. Moreover, by (1.1), the
probability of outputting something in any given iteration is at least e−2, and therefore, the
probability that the number of iterations is greater than t is at most (1− e−2)t, and in particular,
the expected number of iterations is at most e2.

It remains to show how to efficiently compute the probability in (1.1). By scaling, it suffices
to show how to compute

ρr(Z + c) =
∑
k∈Z

exp(−π(k + c)2/r2)

for any r > 0 and c ∈ [0, 1). If r < 1, the sum decays very fast, and we can achieve any desired
t bits of accuracy in time poly(t), which agrees with our notion of efficiently computing a real
number (following, e.g., the treatment in [Lov86, Section 1.4]). For r ≥ 1, we use the Poisson
summation formula (see, e.g., [MR07, Lemma 2.8]) to write

ρr(Z + c) = r ·
∑
k∈Z

exp(−πk2r2 + 2πick) = r ·
∑
k∈Z

exp(−πk2r2) cos(2πck),

which again decays fast enough so we can compute it to within any desired t bits of accuracy in
time poly(t).

1.4.4 Smoothing parameter

The smoothing parameter of a lattice was introduced by [MR07].

Definition 1.26. For an n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter
ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε.

This parameter gives a threshold above which many properties for continuous Gaussians also
carry over to discrete Gaussians. We recall a few standard properties on the smoothing parameter
and on discrete Gaussians.

Lemma 1.27 ([MR07, Lemma 3.3]). Let Λ be an n-dimensional lattice and ε > 0. Then

ηε(Λ) ≤ λn(Λ) ·
√

ln(2n(1 + 1/ε))
π

.

Lemma 1.28 ([GPV08, Lemma 3.1]). Let Λ be an n-dimensional lattice with basis B and ε > 0.
Then

ηε(Λ) ≤ ‖B̃‖ ·
√

ln(2n(1 + 1/ε))
π

.

This first lemma implies a (trivial) reduction from SIVPγ to GIVPηεγ′ , with γ′ = γ/
√

ln(2n(1+1/ε))
π .
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1.4. Gaussian measures

Lemma 1.29 ([Pei08, Lemma 3.5]). Let Λ be an n-dimensional lattice and ε > 0. Then

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))
π

/λ∞1 (Λ∗),

where λ∞1 refers to the lattice minimum with respect to the infinity norm.

Lemma 1.30 ([MR07, Lemma 4.1]). For any n-dimensional lattice Λ, ε > 0, s ≥ ηε(Λ), the
distribution of x mod Λ where x is sampled from Ds is within statistical distance ε/2 of the
uniform distribution on cosets of Λ.

Lemma 1.31 ([Reg09, Claim 3.8]). For any n-dimensional lattice Λ, ε > 0, s ≥ ηε(Λ), and
c ∈ Rn, we have ρr(Λ + c) ∈ [ 1−ε

1+ε , 1] · ρs(Λ).

Lemma 1.32 (Adapted from [MR07, Lemma 2.7]). Let Λ be an n-dimensional lattice and
ε ∈ (0, 1). Then for any c ∈ Rn and s ≥ ηε(Λ) we have ρs,c(Λ) ∈ [1− ε, 1 + ε] · det(Λ)−1.

Lemma 1.33 ([GPV08, Corollary 2.8]). Let Λ′ ⊆ Λ be n-dimensional lattices. Then for any
ε ∈ (0, 1), any s ≥ ηε(Λ′), and any c ∈ Rn, the distribution (DΛ,s,c mod Λ′) is within statistical
distance at most 2ε of the uniform distribution over Λ/Λ′. And for any x ∈ Λ/Λ′ we have:

(DΛ,s,c mod Λ′)(x) ∈
[

1− ε
1 + ε

,
1 + ε

1− ε

]
· det(Λ)

det(Λ′) .

Lemma 1.34 ([MR04, Lemma 4.4]). Let Λ be an n-dimensional lattice, s > 2ηε(Λ) for ε ≤ 1/100,
and c ∈ Rn. Then for any (n− 1)-dimensional hyperplane H, the probability that x /∈ H where x
is chosen from DΛ,s,c is ≥ 1/100.

Lemma 1.35 ([PR06]). Let n and q ≥ 2 be integers. Let m ≥ 2n log q, and σ ≥ ηε(Zm) for
ε < 1/3. Then the min-entropy of DZm,σ is at least m− 1.

1.4.5 Tail bounds
An important property on Gaussian distributions is that a sample from a continuous or a discrete
Gaussian distribution is short with overwhelming probability.

Lemma 1.36 ([Ban93, Le. 1.5]). For any lattice Λ ⊆ Rn, vector c ∈ Rn, and parameter s > 0,
we have

Pr
b←↩DΛ,s,c

[‖b− c‖ ≤
√
ns] ≥ 1− 2−Ω(n).

Lemma 1.37 (Adapted from [Pei08, Cor. 5.3]). For any n-dimensional lattice Λ ⊆ Rn, c ∈ Rn,
ε ∈ (0, 1), t ≥

√
2π, unit vector u ∈ Rn and s ≥ ηε(Λ), we have:

Pr
b←↩DΛ,s,c

[|〈b− c,u〉| ≥ st] ≤ 1 + ε

1− εt
√

2πe · e−πt
2
.

Lemma 1.38 (Adapted from [Pei08, Cor. 5.3]). Let Λ be an n-dimensional lattice, ε ∈ (0, 1)
and r ∈ Rn with ri ≥ ηε(Λ) for all i ≤ n. Then we have

Prx←↩DΛ,r

[
‖x‖∞ ≥ (max

i
ri) · t

]
≤ 2en · exp(−πt2),

for all t > 0. In particular, for t = ω(
√

logn) (resp. t = Ω(
√
n)) the above probability is at most

n−ω(1) (resp. 2−Ω(n)).
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We now generalize [Pei08, Cor. 5.3] and [SS11, Le. 2.9] to the case of module lattices (over
the ring of integers of a cyclotomic number field).

Lemma 1.39. Let ε ∈ (0, 1
2m+1 ) and z1, . . . , zm ∈ R. Let M ⊆ Kd be a rank d module on R,

s ≥ ηε(M) and c1, . . . , cm ∈ Rd. If the y`’s are independently sampled from the DM,s,c` ’s, then,
for all t ≥ 0:

Pr
[
‖
∑
`∈[m]

z` · (y` − c`) ‖∞≥ st‖z‖
]
≤ 21 + ε

1− εtN
√

2πe · e−πt
2
.

In particular, for t = ω(
√

logN) the above probability is negligible with respect to N .

Proof. The proof builds upon that of [Pei08, Cor. 5.3]. The principle is to interpret them Gaussian
samples from the N -dimensional lattice M as one Gaussian sample from the (Nm)-dimensional
lattice L and then apply Lemma 1.37, where L = M × · · · ×M (i.e., the Cartesian product of m
copies of M). We also define −→c = (c1, . . . , cm)T ∈ (Rd)m and −→y = (y1, . . . ,ym)T ∈ (Rd)m. We
have ρs,−→c (L) =

∏
`∈[m] ρs,c`(M). The vector −→y has distribution DL,s,−→c . We have:

σC
( ∑
`∈[m]

z` · (y` − c`)
)

=


∑m
`=1 σC(z` · (y(1)

` − c
(1)
` ))

...∑m
`=1 σC(z` · (y(d)

` − c
(d)
` ))

 =


(
〈σj(−→z ), σj(−→y (1) −−→c (1))〉

)
j∈Z×ν...(

〈σj(−→z ), σj(−→y (d) −−→c (d))〉
)
j∈Z×ν


with −→z = (z1, . . . , zm)T ∈ Rm, −→y (k) − −→c (k) = (y(k)

1 − c(k)
1 , . . . , y

(k)
m − c(k)

m )T ∈ Rm for k ∈ [d],
and, for any j ∈ Z×ν and −→x ∈ Rm, σj(−→x ) = (σj(x`))`∈[m].

By applying the union bound over all j ∈ Z×ν and all k ∈ [d], it suffices to obtain a probabilistic
upper bound on the Hermitian product between σj(−→z ) and σj(−→y (k) −−→c (k)) for any fixed j
and k. For the rest of the proof, we fix j ∈ Z×ν and k ∈ [d]. Wlog (by complex conjugation), we
take j ∈ J.

For ` ∈ [m], let u` = (u(1)
` , . . . , u

(d)
` )T ∈ Cnd with u(k′)

` = (0, . . . , 0)T for k′ 6= k, and:

u
(k)
` = (0, . . . , 0, σj(z`), 0, . . . , 0,−i · σj(z`), 0, . . . , 0)T ,

i.e., the coordinate of index j is equal to σj(z`), the coordinate of index ν−j is equal to −i ·σj(z`),
and all the others are 0. We now define −→u ∈ Cndm as the concatenation of the u`’s (for ` ∈ [m]),
and σH(−→y −−→c ) ∈ Rndm as the concatenation of the σH(y` − c`)’s. We have:

〈σj(−→z ), σj(−→y (k) −−→c (k))〉 =
∑
`

σj(z`)σj(y(k)
` − c

(k)
` ) = 〈−→u , σH(−→y −−→c )〉.

Now, we define −→v = −→u /‖−→u ‖ ∈ Cndm. By Lemma 1.37, we have:

Pr−→y←↩DL,s,−→c

[
|〈σH(−→y −−→c ),<(−→v )〉| ≥ st

]
≤ 1 + ε

1− εt
√

2πe · e−πt
2
,

Pr−→y←↩DL,s,−→c

[
|〈σH(−→y −−→c ),=(−→v )〉| ≥ st

]
≤ 1 + ε

1− εt
√

2πe · e−πt
2
,

where < and = respectively denote the real and imaginary parts of a complex number. By using
the union bound and scaling by ‖−→u ‖ ≤ ‖z‖, we obtain that:

Pr
[
|〈−→u , σH(−→y ′ −−→c ′)〉| ≥ st‖z‖

]
≤ 21 + ε

1− εt
√

2πe · e−πt
2
.
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This leads to the claimed result.
When the parameter of the Gaussian is a matrix, we compare the smallest singular value of

this matrix to the smoothing parameter to obtain a tail on the discrete Gaussian distribution
which depends on the largest singular value of the parameter.

Lemma 1.40 ([AGHS13, Le. 3]). For a rank-n lattice Λ, constant 0 < ε < 1, vector c and matrix
S with σn(S) ≥ ηε(Λ), if x is sampled from DΛ,S,c then ‖x‖ ≤ σ1(S)

√
n, except with probability

≤ 1+ε
1−ε · 2−n.

1.4.6 Linear combinations of Gaussians
The sum of two continuous Gaussians with parameters s and r is a continuous Gaussian with
parameter

√
s2 + r2. We have the following similar result for the sum of a continuous Gaussian

and a discrete one.

Lemma 1.41 ([Reg09, Claim 3.9]). Let Λ be an n-dimensional lattice, let u ∈ Rn be arbitrary,
let r, s > 0 and let t =

√
r2 + s2. Assume that rs/t = 1/

√
1/r2 + 1/s2 ≥ ηε(Λ) for some ε < 1/2.

Consider the continuous distribution Y on Rn obtained by sampling from DΛ+u,r and then adding
a noise vector taken from Ds. Then we have ∆(Y,Dt) ≤ 4ε.

We adapt this Lemma in the case of elliptical Gaussian distributions.

Lemma 1.42 (Adapted from [Reg09, Claim 3.9]). Let Λ be an n-dimensional lattice, u ∈ Rn,
r ∈ (R+)n, s > 0 and ti =

√
r2
i + s2 for all i. Assume that mini(riσ/ti) ≥ ηε(Λ) for some ε ≤ 1/2.

Consider the discrete distribution Y on Rn obtained by sampling from DΛ+u,r and then adding a
vector taken from Ds. Then we have ∆(Y,Dt) ≤ 4ε.

Proof. This proof follows the same principle as the one of [Reg09, Claim 3.9], the only difference
being that [Reg09, Claim 3.9] considers the case where all ri’s are equal. Using the Poisson
summation formula, one obtains that the probability density function Y can be written as:

∀x ∈ Rn : Y (x) = ρt(x)∏
i ti
·

(∏
i
ti
sri

)
· ̂ρt′,x′−u(Λ∗)(∏

i
1
ri

)
· ρ̂r,−u(Λ∗)

,

where t′i = ris/ti and x′i = r2
i xi/t

2
i for all i, and where f̂ denotes the Fourier transform of f .

Then, we have:∣∣∣∣∣1−
(∏

i

ti
sri

)
̂ρt′,x′−u(Λ∗)

∣∣∣∣∣ ≤ ρt′′(Λ∗ \ {0}), with t′′i = 1/t′i for all i,∣∣∣∣∣1−
(∏

i

1
ri

)
ρ̂r,−u(Λ∗)

∣∣∣∣∣ ≤ ρr′′(Λ∗ \ {0}), with r′′i = 1/ri for all i.

Let s′ and s′ > 0 be such that s′i ≥ s′ for all i. We have that for any vector x:

ρ1/s′(x)
ρ(1/s′

i
)i(x) = exp

(
−π
∑
i

((s′)2x2
i − (s′i)2x2

i )
)
≥ 1.

This implies that ρt′′(Λ∗ \ {0}) ≤ ε and ρr′′(Λ∗ \ {0}) ≤ ε, which completes the proof.
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Lemma 1.43 (Special case of [Pei10, Theorem 3.1]). Let Λ be a lattice and r, s > 0 be such that
s ≥ ηε(Λ) for some ε ≤ 1/2. Then if we choose x from the continuous Gaussian Dr and then
choose y from the discrete Gaussian DΛ−x,s then x + y is within statistical distance 8ε of the
discrete Gaussian DΛ,

√
r2+s2 .

1.4.7 Product and inner product
The product of a continuous Gaussian on R with parameter s and a scalar x ∈ R is a continuous
Gaussian with parameter |x|s. This can be generalized to the ring and module settings. The
following result is given in [LPR10], but without proof.

Lemma 1.44. Let r ∈ (R+)n with rj = rν−j for all j ∈ Z×ν , x ∈ K sampled from Dr and e ∈ K
fixed. Then x · e is distributed from Dr′ with r′j = rj |σj(e)| for all j.

Proof. Let us write σC(x) =
∑
j xj · hj where each xj is sampled from Drj . By definition of the

hj ’s, we have σj(x) = (xj + ixν−j) and σν−j(x) = (xj − ixν−j), for j ∈ J. Let σC(e) =
∑
j ej ·hj

and σC(e · x) =
∑
j yj · hj . We have, for j ∈ J[

yj
yν−j

]
=
[
ej −eν−j
eν−j ej

] [
xj
xν−j

]
The vector (yj , yν−j)T is an orthogonal transformation of the vector (xj , xν−j), and thus yj and
yν−j are statistically independent. Further, the reals yj and yν−j are samples of Dr′

j
and Dr′

ν−j

respectively, with r′j = r′ν−j = (e2
jr

2
j + e2

ν−jr
2
ν−j)1/2 = rj |σj(e)|.

The following lemma generalizes the previous result to the module setting.

Lemma 1.45. Let r ∈ (R+)n with rj = rν−j for all j ∈ Z×ν , x ∈ Kd sampled from Ds,...,s and
e ∈ Kd fixed. Then

∑
k xkek is distributed from Dr’ with r′j = rj · (

∑
k∈[d] |σj(ek)|2)1/2 for all j.

Proof. By Lemma 1.44, we have that xk · ek has distribution Dr′
k
with r′k,j = r′k,ν−j = rj |σj(ek)|

for all j. The quantity under scope is the sum of independent Gaussians.

Lemma 1.46 ([Reg09, Corollary 3.10]). Let Λ be an n-dimensional lattice, let u, z ∈ Rn be
arbitrary, and let r, α > 0. Assume that (1/r2 + (‖z‖/α)2)−1/2 ≥ ηε(Λ) for some ε < 1/2. Then
the distribution of 〈z, v〉+ e where v is sampled from DΛ+u,r and e is sampled from Dα, is within
statistical distance 4ε of Dβ for β =

√
(r‖z‖)2 + α2.
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Chapter 2

Small Integer Solution and Learning with
Errors Problem

Two main problems serve as the foundation of numerous lattice-based cryptographic protocols.
The first one, introduced by Ajtai in 1996 [Ajt96], is the Short Integer Solution problem (SIS):
For parameters n, m and q positive integers, the problem is to find a short nonzero solution
z ∈ Zm to the homogeneous linear system Az = 0 mod q for uniformly random A ∈ Zn×mq

(the notation Zq denotes the ring of integers modulo q). The second one, introduced by Regev
in 2005 [Reg05, Reg09], is the Learning With Errors problem (LWE). The search version of LWE
is as follows: For parameters n and q positive integers and χ a probability density function on
T = R/Z ' [0, 1), the problem is to find s, given arbitrarily many independent pairs (a, 1

q 〈a, s〉+e)
for a vector a ∈ Znq chosen uniformly at random, and e ∈ T sampled from χ. It is possible
to interpret LWE in terms of linear algebra: If m independent samples (ai, 1

q 〈ai, s〉 + ei) are
considered, the goal is to find s from (A, 1

qAs + e), where the rows of A correspond to the ai’s
and e = (e1, . . . , em)T . The decision counterpart of LWE consists in distinguishing between
arbitrarily many independent pairs (a, 1

q 〈a, s〉+ e) sampled as in the search version and the same
number of uniformly random and independent pairs.

Ajtai [Ajt96] proposed the first worst-case to average-case reduction for a lattice problem, by
providing a reduction from SIVPγ to SIS, where γ depends on the shortness of the SIS solution.
Later, Regev [Reg05, Reg09] showed the hardness of the LWE problem by describing a (quantum)
reduction from SIVPγ to LWE. Cryptographic protocols relying on SIS or LWE therefore enjoy
the property of being provably at least as secure as a worst-case problem which is strongly
suspected of being extremely hard. However, on the other hand, the cryptographic applications
of SIS and LWE are inherently inefficient due to the size of the associated key (or public data),
which typically consists of the matrix A.

In this chapter, we give the formal definition of those two problems, and we describe the existing
hardness results. In Chapter 3, we provide examples of cryptographic primitives constructed
using those two problems.

2.1 Small Integer Solution problem

We first describe the Small Integer Solution problem.
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2. Small Integer Solution and Learning with Errors Problem

2.1.1 Definition
The SIS problem was first introduced by Ajtai [Ajt96] and formalized in [MR07].

Definition 2.1. The Small Integer Solution problem SISq,m,β is as follows: Given A ∈ Zn×mq

chosen from the uniform distribution, find z ∈ Zm such that zTA = 0 mod q and 0 < ‖z‖ ≤ β.

z

A = 0 mod q

Figure 2.1: The Small Integer Solution problem.

As observed in [MR07, Le. 5.2], for any q, A ∈ Zn×mq and β ≥
√
mqn/m, the SIS instance

(q,A, β) admits a solution.

ISIS. There exists a variant of the SIS problem: the Inhomogeneous Small Integer Solution
problem. Instead of finding a solution of a homogeneous system we now look for a solution of a
inhomogeneous one.

Definition 2.2. The Inhomogeneous Small Integer Solution problem ISISq,m,β is as follows:
Given A ∈ Zn×mq and a syndrome u ∈ Znq both chosen from the uniform distribution, find z ∈ Zm

such that zTA = uT mod q and ‖z‖ ≤ β.

We denote by SISpn,m,q,β (respectively ISISpn,m,q,β) the SIS (respectively the ISIS) problem in
the `p norm.

2.1.2 Hardness of SIS
There are several reductions from GIVP to SIS (see, e.g., [Ajt96, MR04, GPV08]). The strongest
known result is the following.

Theorem 2.3 (Adapted from [GPV08, Th. 9.2]). For ε(n) = n−ω(1), there is a probabilistic
polynomial time reduction from solving GIVPηεγ in polynomial time (in the worst case, with high
probability) to solving SISq,m,β (or ISISq,m,β ) in polynomial time with non-negligible probability,
for any m(n), q(n), β(n) and γ(n) such that γ ≥ β

√
n · ω(

√
logn), q ≥ β

√
n · ω(logn) and

m, log q ≤ poly(n).

It then follows from the relationship between the `2 and `∞ norms that the SIS∞q,m,β and
ISIS∞q,m,β problems are at least as hard as SIVP2

γ (in the `2 norm) for some γ = β · Õ(n).

Proof. We now sketch the proof given by [GPV08] for the SIS problem. The full proof for the
ISIS problem follows the same principle and is given in [GPV08]. The authors use an intermediate
problem called the Incremental Independent Vectors Decoding problem defined in Definition 1.15.
The reduction from GIVP to this problem is recalled in Chapter 1, Theorem 1.17.

We now give the principle of the reduction from IncIVDηεγ,g to SISq,m,β . Given a tuple (B,S, t),
the goal is to find a lattice vector v ∈ L(B) such that ‖v− t‖ ≤ ‖S‖g , given a SISq,m,β oracle.
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2.2. Learning with Errors problem

• Choose j ∈ [m] and α ∈ {−β, . . . , β} uniformly at random.
Let cj = t · q/α and ci = 0 otherwise.
Using Lemma 1.8, convert (B,S) into a basis T of L(B) such that ‖T̃‖ ≤ ‖S̃‖ ≤ ‖S‖.
• Let s = ‖S‖ · q/γ. For each i ∈ [m], sample yi ←↩ DL(B),s,ci using T in Theorem 1.24. Then
let A = B−1Y mod q, where Y = [y1, . . . ,ym] ∈ Rn×m.
• Invoke the SISq,m,β oracle on A, yielding e ∈ Zn, and output v = Ye/q.

We now have to prove that the distribution of the matrix A is statistically close to the
uniform distribution over Zn×mq , that v ∈ L(B) and finally that ‖v − t‖ ≤ ‖S‖/g. The first
result comes from Lemma 1.33. As ‖S‖ ≥ ηε(qL(B)). We have that yi mod qL(B) is statistically
close to uniform over L(B)/qL(B), and then that ai = B−1yi mod q is statistically close to
uniform over Znq . As the yi are independent and m = poly(n), the distribution of the matrix A
is statistically close to the uniform distribution over Zn×mq . We then have that the oracle outputs
a non-zero solution e such that, with probability 1/(2βm), the coordinate ej = α. We know that
Ae = 0 mod q, which implies that B−1Ye = 0 mod q. Then we have B−1Ye ∈ qL(B) which
implies that v ∈ L(B).

Finally, if ej = α we have t = Ce/q where C = [c1, . . . , cm]. For each yi we let wi =
yi mod qL(B). Then, conditioned on any fixed value of wi, the vector yi is distributed as
wi + DqL(B),s,ci−wi

. As a consequence, for any fixed e, the vector v − t = (Y − C)e/q is
distributed as

1
q

(
(W−C)e +

∑
i

ei ·DqL(B),s,ci−wi

)
As s ≥ ηε(qL(B)), this is distributed as a Gaussian centered in 0 and of parameter ‖e‖ · s/q.
This gives that ‖v− t‖ ≤ ‖S‖/g.

Recently, Micciancio and Peikert [MP13] gave another hardness result for the SIS problem for
small parameters. Indeed, Theorem 2.3 required q ≥ β

√
n · ω(

√
logn) and in [MP13] they only

need q ≥ β · nδ for any constant δ > 0.

Theorem 2.4 ([MP13, Theorem 1.1]). Let n and m = poly(n) be integers, and let q ≥ β · nδ for
any constant δ > 0. Then there is a polynomial time reduction from solving GIVPηεγ to solving
SISq,m,β for γ = max{1, β2/q} · Õ(β

√
n).

2.2 Learning with Errors problem

We now introduce the second fundamental problem in lattice-based cryptography, the Learning
with Errors problem, and give the principle of its existing hardness reduction from hard problems
on lattices.

2.2.1 Definition
The Learning with Errors problem has been introduced by Regev [Reg05] in 2005.

There are several versions of this problem, we will describe two of them which are equivalent.
The main parameters of this problem are the dimension n and the modulus q. In the first version
all elements will have coordinates in Zq, all the operations will be modulo q. In the second version,
part of the elements will be in T = R/Z which denotes the segment [0, 1) with addition modulo 1.
We also recall that we denote by Tq its cyclic subgroup of order q, i.e., the subgroup given by
{0, 1/q, . . . , (q − 1)/q}.

We recall the following definitions from [Reg05, Reg09].
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2. Small Integer Solution and Learning with Errors Problem

Distribution Aq,s,φ. For a probability density function φ on T and a vector s ∈ Znq , we let Aq,s,φ
denote the distribution on Znq × T obtained by choosing a vector a ∈ Znq uniformly at random,
choosing e ∈ T according to φ, and returning (a, 1

q 〈a, s〉+ e).
This distribution could also be defined by choosing e ∈ Z according to φ on Z, and returning

(a, 〈a, s〉 + e). Alternatively one can also choose a vector a ∈ Tnq uniformly at random, e ∈ T
according to φ on T, and return (a, 〈a, s〉+ e) ∈ Tnq × T.

Definition 2.5. The search version of the Learning With Error problem SLWEn,q,φ is as follows:
Let s ∈ Znq be secret; Given arbitrarily many samples from Aq,s,φ, the goal is to find s.

The decision version of the Learning With Error problem LWEn,q,φ is as follows: Let s ∈ Znq
be uniformly random; The goal is to distinguish between arbitrarily many independent samples
from Aq,s,φ and the same number of independent samples from U(Znq × Zq).

The LWE problem is equivalently defined for a Aq,s,φ distribution in Tnq × T or in Znq × T. In
Chapter 4, we use the representation of samples in Tnq × T, whereas in Chapter 5, we use the
representation of samples in Znq × T.

It is also possible to interpret LWE in terms of linear algebra: Suppose the number of requested
samples (ai, 〈ai, s〉+ ei) from Aq,s,φ is m, then we consider the matrix A ∈ Zm×nq whose rows are
the ai’s, and we create the vector e = (e1, . . . , em)T . When the number of samples is known and
if needed, we may use the notation LWEn,m,q,φ. Then SLWE is as follows:

,A A
s

+ e
m

n

find s

Figure 2.2: The Learning With Errors problem.

2.2.2 Hardness of search LWE

Theorem 2.6 ([Reg09]). Let ε(n) = n−ω(1), α ∈ (0, 1) and q ≥ 2 such that αq > 2
√
n. There

exists a quantum reduction from solving GIVPηε√8n/α in polynomial time (in the worst case, with
high probability) to solving SLWEq,Dα in polynomial time with non-negligible probability.

Assume that q is prime, q ≤ poly(n), and that φ is a probability density function on T. Then
there exists a polynomial-time reduction from SLWEq,φ to LWEq,φ.

A quantum reduction from SIVP. The first main result of [Reg09] is the reduction from GIVP
to the computational version of LWE. It makes use of the following intermediary problem, where
φ denotes an arbitrary real-valued function on lattice, called Discrete Gaussian Sampling problem
(DGSφ): Given an n-dimensional lattice Λ and a number r > φ(Λ), output a sample from DΛ,r.
Regev’s reduction proceeds in two steps:

GIVP√8n
α

[Reg09, Le. 3.17] DGS√2n
α

Lemma 2.7 SLWEq,Dα
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2.2. Learning with Errors problem

The first reduction is lattice-preserving and also works for the structured versions of LWE
to be considered later. In contrast, the second one will need to be modified. It comes from the
following result:

Lemma 2.7 ([Reg09, Le. 3.3]). Let ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2.
Assume that we have access to an oracle that solves SLWEq,Dα in polynomial time with non-
negligible probability (resp. in sub-exponential time with non-exponentially small probability).
Then there exists a polynomial time (resp. sub-exponential time) quantum algorithm that, given an
n-dimensional lattice Λ, a number r >

√
2q · ηε(Λ) and poly(n) (resp. 2o(n)) samples from DΛ,r,

produces a sample from DΛ, r
√
n

αq

with non-negligible (resp. non-exponentially small) probability.

The principle of the Regev’s reduction from DGS to SLWE is to use Lemma 2.7 several times
to progressively decrease the value of r. Take r >

√
2q · ηε(Λ) and ri = r · (αq/

√
n)i. The first

iteration starts with r3n > 23n > 22nλn(Λ) (using a LLL-reduction algorithm beforehand). Then
it obtains poly(n) (resp. 2o(n)) samples of DΛ,r3n by Theorem 1.24, and finishes with poly(n)
(resp. 2o(n)) samples of DΛ,r3n−1 (the reduction repeats poly(n) (resp. 2o(n)) times the same
iteration with the same samples in input to obtain sufficiently many different samples in output).
It iterates until having poly(n) (resp. 2o(n)) samples of DΛ,r1 with r1 = rαq/

√
n >
√

2q · ηε(Λ)
then it iterates a last time to obtain samples of DΛ,r0 with r0 = r >

√
2n · ηε(Λ)/α. These

samples are solutions to DGS√2n·ηε(Λ)/α.
To prove Lemma 2.7, Regev uses the intermediary problems called q-BDDδ: Given a lattice Λ

and any point y ∈ Rn within distance δ < λ1(Λ)/2 of the lattice, output the coset of Λ/qΛ of the
closest vector to y. The proof of Lemma 2.7 consists also of a sequence of reductions:

DGSΛ, r
√
n

αq

[Reg09, Le. 3.14 & 3.5]
(quantum)

q-BDDΛ∗, αq√
2r

Lemma 2.8
SLWEq,Dα

+
samples from DΛ,r

The first reduction also works for the structured versions of LWE to be considered later.
However, we will modify the second reduction, by proving an adaptation of the following result.

Lemma 2.8 ([Reg09, Le. 3.4]). Let ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2.
Let Λ be a n-dimensional lattice and r ≥

√
2q · ηε(Λ). Given access to an oracle sampling from the

distribution DI,r, there exists a probabilistic reduction from solving q-BDDΛ∗, αq√
2r

in polynomial
time with non-negligible probability (resp. in sub-exponential time with non-exponentially small
probability) to solving SLWEq,Dα in polynomial time with non-negligible probability (resp. in
sub-exponential time with non-exponentially small probability).

2.2.3 From search LWE to decisional LWE
The second main result from [Reg09] is a reduction from the computational problem SLWE to
its decisional counterpart LWE. Note that this reduction does not carry over to the structured
variants of LWE that we will consider in Chapter 5.

The most recent search-to-decision reduction is by Micciancio and Peikert [MP12], which
essentially subsumes all previous reductions, requires the modulus q to be smooth. Below we give
the special case when the modulus is a power of 2, which suffices for our purposes. It follows
from the results in Chapter 4 that (decision) LWE is hard not just for a smooth modulus q, as
follows from [MP12], but actually for all moduli q, including prime moduli, with a deterioration
in the noise of Õ(

√
n) (see Corollary 4.5).
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2. Small Integer Solution and Learning with Errors Problem

Theorem 2.9 (Special case of [MP12, Theorem 3.1]). Let q be a power of 2, and α satisfy
1/q < α < 1/ω(

√
logn). Then there exists an efficient reduction from search LWEn,q,α to

(decision) LWEn,q,α′ for α′ = α · ω(logn).

A classical reduction from GapSVP for q exponential. In [Pei09], Peikert gave the first classical
reduction from GapSVP to show the hardness of LWE, but this reduction only allows q exponential
in the dimension n.

Theorem 2.10 ([Pei09, Th. 3.1]). For ε(n) = n−ω(1), there is a probabilistic polynomial time
reduction from solving Gap-SVPn,γ in polynomial time (in the worst case, with high probability)
to solving LWEn,q,α in polynomial time with non-negligible probability, for any m(n), q(n), α(n)
and γ(n) such that γ ≥ n

α logn , q ≥ 2n/2 · ω(
√

logn/n) and m ≤ poly(n).

2.2.4 Unknown (bounded) noise rate

We also consider a variant of LWE in which the amount of noise is some unknown β ≤ α (as
opposed to exactly α), with β possibly depending on the secret s. As the following lemma shows,
this does not make the problem significantly harder.

Definition 2.11. For integers n, q ≥ 1 and α ∈ (0, 1), LWEn,q,≤α is the problem of solving
LWEn,q,β for any β ≤ α, where β possibly depends on s.

Lemma 2.12. Let A be an algorithm for LWEn,m,q,α with advantage at least ε > 0. Then there
exists an algorithm B for LWEn,m′,q,≤α using oracle access to A and with advantage at least 1/3,
where both m′ and its running time are poly(m, 1/ε, n, log q).

The proof is standard (see, e.g., [Reg09, Lemma 3.7] for the analogous statement for the
search version of LWE). The idea is to use Chernoff bound to estimate A’s success probability on
the uniform distribution, and then add noise in small increments to our given distribution and
estimate A’s behaviour on the resulting distributions. If there is a gap between any of these and
the uniform behaviour, the input distribution is deemed non-uniform. The proof is omitted.

2.2.5 Distribution of the secret vector s

We denote by LWEn,q,φ(D) the LWE problem for any distribution over secrets D. When the noise
is a Gaussian with parameter α > 0, i.e., φ = Dα, we use the shorthand LWEn,q,α(D). Since the
case when D is uniform over {0, 1}n plays an important role in Chapter 4, we will denote it by
binLWEn,q,φ (and by binLWEn,m,q,φ when the algorithm only gets m samples). Finally, as we
show in the following lemma, one can efficiently reduce LWE to the case in which the secret is
distributed according to the (discretized) error distribution and is hence somewhat short. This
latter form of LWE, known as the “normal form,” was first shown hard in [ACPS09] for the case
of prime q. Here we observe that the proof extends to non-prime q, the new technical ingredient
being Claim 2.14 below.

Lemma 2.13. For any q ≥ 25, n,m ≥ 1, α > 0, ε < 1/2 and s ≥
√

ln(2n(1 + 1/ε)/π)/q,
there is an efficient (transformation) reduction from LWEn,m,q,α to LWEn,m′,q,α(D) where m′ =
m − (16n + 4 ln ln q) and D = DZn,q(α2+s2)1/2 , that turns advantage ζ into an advantage of at
least (ζ− 8ε)/4. In particular, assuming α ≥

√
ln(2n(1 + 1/ε)/π)/q, we can take s = α, in which

case D = DZn,
√

2qα.
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2.2. Learning with Errors problem

Proof. Consider the first 16n + 4 ln ln q samples (a, b). Using Claim 2.14, with probability at
least 1− 2e−1 ≥ 1/4, we can efficiently find a subsequence of the samples such that the matrix
A0 ∈ Zn×nq whose columns are formed by the a in the subset (scaled up by q) has an inverse
A−1

0 ∈ Zn×nq modulo q. If we cannot find such a subsequence, we abort. Let b0 ∈ Tn be the
vector formed by the corresponding b in the subsequence. Let also b′0 ∈ Tnq be b0 + x where x is
chosen from Dq−1Zn−b0,s. (Notice that the coset q−1Zn − b0 is well defined because b0 is a coset
of Zn ⊆ q−1Zn.) From each of the remaining m′ samples (a, b) ∈ Tnq × T we produce a pair(

a′ = A−1
0 a, b′ = b− 〈A−1

0 · qa,b′0〉
)
∈ Tnq × T.

We then apply the given LWE oracle to the resulting m′ pairs and output its result.
We now analyze the reduction. First notice that the construction of A0 depends only on

the a component of the input samples, and hence the probability of finding it is the same in
case the input is uniform and in case it consists of LWE samples. It therefore suffices in the
following to show that there is a distinguishing gap conditioned on successfully finding an A0.
To that end, first observe that if the input samples (a, b) are uniform in Tnq × T then so are the
output samples (a′, b′). Next consider the case that the input samples are distributed according to
Aq,s,Dα for some s ∈ Zn. Then since s ≥ ηε(q−1Z) by Lemma 1.28, using Lemma 1.43 we get that
b′0 = q−1AT

0 s + e0 where e0 is distributed within statistical distance 8ε from Dq−1Zn,(α2+s2)1/2 .
Therefore, for each output sample (a′, b′) we have

b′ = b− 〈A−1
0 · qa,b′0〉 = 〈a, s〉+ e− 〈a, s〉 − 〈A−1

0 qa, e0〉 = 〈−qe0,a′〉+ e,

where e is an independent error from Dα. Therefore, the output samples are distributed according
to Aq,−qe0,Dα , completing the proof.

Claim 2.14. For any q ≥ 25, n ≥ 1, and t1 ≥ 4, t2 ≥ 1, given a sequence of t1n+t2 ln ln q vectors
a1,a2, . . . chosen uniformly and independently from Znq , except with probability e−t1n/16 + e−t2/4,
there exists a subsequence of n vectors such that the n×n matrix they form is invertible modulo q.
Moreover, such a subsequence can be found efficiently.

Proof. We consider the following procedure. Let k be a counter, initialized to 0, indicating the
number of vectors currently in the subsequence, and let A ∈ Zn×kq be the matrix whose columns
are formed by the current subsequence. We also maintain a unimodular matrix U ∈ Zn×n,
initially set to the identity, satisfying the invariant that U ·A ∈ Zn×kq has the following form:
its top k × k submatrix is upper triangular with each diagonal coefficient coprime with q; its
bottom (n− k)× k submatrix is zero. The procedure considers the vectors ai one by one. For
each vector a, if it is such that the gcd of the last n− k entries of Ua, call it g, is coprime with q,
then it does the following: it adds a to the subsequence, computes (using, say, the extended GCD
algorithm) a unimodular matrix V that acts as identity on the first k coordinates and for which
the last n− k coordinates of VUa are (g, 0, . . . , 0), replaces U with VU, and increments k.

It is easy to see that the procedure’s output is correct if it reaches k = n. It therefore suffices
to analyse the probability that this event happens. For this we use the following two facts to
handle the cases k < n− 1 and k = n− 1, respectively. First, the probability that the gcd of two
uniformly random numbers modulo q is coprime with q is∏

p|q, p prime

(1− p−2) ≥
∏

p prime
(1− p−2) = ζ(2)−1 ≈ 0.61,

where ζ is the Riemann zeta function.
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2. Small Integer Solution and Learning with Errors Problem

Second, the probability that one uniformly random number modulo q is coprime with q is
ϕ(q)/q, where ϕ is Euler’s totient function. By [BS96, Theorem 8.8.7], this probability is at least
(eγ ln ln q + 3/(ln ln q))−1 where γ is Euler’s constant, which for q ≥ 25 is at least (4 ln ln q)−1.

Using the (multiplicative) Chernoff bound, the first fact, and the fact that Ua is uniform in
Znq since U is unimodular, we see that the probability that k < n− 1 after considering t1n vector
is at most e−t1n/16. Moreover, once k = n− 1, using the second fact we get that the probability
that after considering t2 ln ln q additional vectors we still have k = n− 1 is at most e−t2/4.
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Chapter 3

Simple Lattice-Based Cryptographic
Primitives

In the previous chapter, we described the LWE and SIS problems, which are fundamental in
lattice-based cryptography as most of the schemes are based on these problems.

The LWE problem is the basis of many cryptographic constructions such as encryption scheme
secure against chosen-plaintext attacks [Reg05, GPV08, PVW08, LP11], chosen-ciphertext at-
tacks [PW08, Pei09, MP12], oblivious transfer [PVW08], identity based encryption (IBE) [GPV08,
CHKP10, ABB10a, ABB10b], various forms of leakage-resilient cryptography [AGV09], attribute
based encryption [GVW13], and Fully Homomorphic Encryption [BV11, BGV12, Bra12] (first
introduced, but not based on LWE, by Gentry [Gen09]).

The SIS problem is also fundamental in lattice-based cryptography, the lattice-based one-
way and collision resistant hash-functions [Ajt96, GGH96, Mic02a, PR06, LM06, LM08, Lyu08]
and signature schemes rely on the hardness of this problem and its ring variant. Attempts
for lattice-based signature schemes started in 1997 with Goldreich et al. [GGH97] but this
scheme is unsecure [NR09]. Constructions also followed from one-way hash function with the
transformation in [NY89] and via the Fiat-Shamir transform [FS86] as the scheme in [MV03].
The first provably secure lattice based signature was introduced in 2008, by Gentry, Peikert
and Vaikuntanathan in [GPV08] (based on trapdoors) and independently by Lyubashevsky and
Micciancio in [LM08] (based on collision-resistant hash function). From then, other constructions
has been given [Lyu09, Lyu12, GLP12, DDLL13].

In this chapter, which is partially based on [LLS14], we first describe in Section 3.1 two
public-key encryption schemes based on LWE, Regev’s encryption scheme introduced by Regev
in [Reg05, Reg09] and the Dual-Regev encryption scheme introduced by Gentry, Peikert and
Vaikuntanathan in [GPV08]. Those two schemes are examples of encryption schemes which are
secure against chosen-plaintext attacks under the hardness of the LWE problem (but they are
not the only ones). In Section 3.2, we first explain the notion of full trapdoor for lattices as
most of the signature schemes and many encryption based on LWE (in particular the Identity
Based Encryption [GPV08, CHKP10, ABB10a, ABB10b, MP12]) use this notion. Then we
describe three lattice-based signature schemes: the first one described in [GPV08], called the GPV
signature, the “Bonsai Tree” signature introduced by [CHKP10] and finally Boyen’s signature
from [Boy10]. As explained before, there are other lattice-based group signatures, we choose to
describe those ones as we will use them in our two group signatures constructions in Chapters 7
and 8.
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3. Simple Lattice-Based Cryptographic Primitives

3.1 Encryption

We start this section by recalling definition and security associated to public-key encryption, then
we give two examples of scheme based on LWE.

3.1.1 Cryptographic definition
Public-key encryption was introduced by Diffie and Hellman [DH76]. We first recall its crypto-
graphic definition and associated notions of security.

Definition 3.1 (Encryption scheme). Let λ be the security parameter. An encryption scheme Π
is given by three probabilistic polynomial time algorithms:

KeyGen(1λ)→ (pk, sk). This algorithm takes λ as input and outputs a pair of keys (pk, sk) which
are the public key and the associated secret key.

Enc(1λ, pk,M)→ C. The encryption algorithm takes as inputs the security parameter λ, a public
key pk and a message M ∈ {0, 1}∗. It outputs a ciphertext C.

Dec(1λ, sk, C)→ {M,⊥}. The decryption algorithm takes as inputs the security parameter λ, a
secret key sk and a ciphertext C. It outputs either the message M , or the symbol ⊥ if the
ciphertext is deemed invalid.

This encryption protocol must be correct, i.e., for any λ large enough and all message
M ∈ {0, 1}∗, if (pk, sk) ← KeyGen(1λ) then Dec(1λ, sk,Enc(1λ, pk,M)) = M with probability
negligibly close from 1 over the choice of the randomness used to encrypt the message.

Security. There are two main types of security used for encryption in public key cryptography:
the security against chosen-plaintext attacks (IND-CPA) and the security against non-adaptive /
adaptive chosen-ciphertext attack (IND-CCA1 and IND-CCA2). The security of an encryption
scheme Π against an adversary A is defined in Figure 3.1.

1. Setup. The challenger runs KeyGen(1λ) to generate (pk, sk), then gives pk to the adversary A.

2. Queries. If the game is CCA, the adversary A can make the following queries:

• Decryption: query to decrypt a cipher ci, the challenger returns Mi = Dec(1λ, sk, ci).

3. Challenge. Adversary A outputs two messagesM0 andM1, such that A never made a decryption
query those messages. The challenger chooses a bit b? ←↩ U({0, 1}), computes a encryption of
Mb as c = Enc(1λ, pk,Mb?), and returns c to A.

4. Restricted queries. If the game is CCA2, the adversary A can make the following queries:

• Decryption: query to decrypt a cipher ci 6= c, the challenger returns Mi = Dec(1λ, sk, ci).

5. Output. Eventually, A outputs a bit b′. Returns 1 if b = b?, 0 otherwise.

Figure 3.1: IND-CPA or IND-CCA security games.

The advantage of the adversary is defined by

AdvIND−ATK
Π (A) =

∣∣∣Pr
(
ExpIND-ATK

Π (A) = 1
)
− 1/2

∣∣∣ ,
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where ATK is either CPA, CCA1 or CCA2.
An encryption scheme is IND-CPA (respectively IND-CCA1 or IND-CCA2) secure if any

probabilistic polynomial adversary against the scheme has a negligible advantage in this security
game.
Remark 3.2. We defined an Encryption scheme for any M ∈ {0, 1}∗, note that the size of the
message can also be fixed by the scheme.

3.1.2 Regev’s encryption scheme
Description. The first encryption scheme based on LWE has been introduced by Regev [Reg05].
The security parameter of this scheme is function of the parameters of LWE. We describe this
scheme in Figure 3.2. All operations are modulo the integer q.

Let n, m, and q be positive integers with q prime and m ≥ 4(n + 1) log2 q, and α be a real
in (0, 1/(4m)).
KeyGen: Given the parameters n,m, q and α.

• Secret key: a vector s such that s←↩ U(Znq ).
• Public key: a pair (A,b) = (A,As + e), where A←↩ U(Zm×nq ) and e←↩ DZm,αq.

Encryption: Given the parameters n,m, q and α, a message M ∈ {0, 1} and a public key (A,b).
Sample r←↩ U({0, 1}m) and output the ciphertext:

(rTA, rTb + bq/2c ·M) ∈ Znq × Zq.

Decryption: Given the parameters n,m, q and α, a ciphertext (uT , v) ∈ Znq × Zq and a secret
key s. Compute v − uT s: the decryption is 0 is the result is closer to 0 than to bq/2c,
otherwise, the decryption is 1.

Figure 3.2: Regev’s encryption scheme.

The principle is to give m LWE samples: (A,b) as a public key, and to keep the vector s as a
secret key. To encrypt one bit M ∈ {0, 1}, one chooses a vector r uniformly at random in {0, 1}m,
which allows to choose a random subset of the rows (ai, bi) of the LWE sample. Then we add the
chosen rows and add bq/2c ·M to the sum of the bi’s. To decrypt a ciphertext (uT , v), one uses
the secret key s to compute v − uT s = rTe + bq/2c ·M . The vector e is sampled from a discrete
Gaussian of parameter αq and then is small enough (such that ‖e‖ ≤ αq

√
m with overwhelming

probability, by Lemma 1.36) to have v − uT s either close from 0, either close from bq/2c, (as
‖r‖ ≤

√
m, we have ‖rTe‖ ≤ αqm ≤ q/4 as α ≤ 1/(4m)). It allows to find the message M .

Remark 3.3. This scheme only allows to encrypt one bit. To encrypt a message of several bits,
one can either use it several times, either use several columns bi instead of one.

Security of the scheme. This scheme is IND-CPA secure under the hardness of the LWE
problem. The full proof is provided by Regev in [Reg09] and sketched in [Reg10a].

First, the Leftover Hash Lemma (LHL) (see Section 1.1.5) gives that if m ≥ 4n log q, the
distribution of the pair (A, rTA) for A uniform in Zm×nq and r uniform in {0, 1}m is statistically
close to the uniform distribution in Zm×nq × Znq .

Regev shows that if there exists an adversary which can distinguish between a ciphertext
of 0 and a ciphertext of 1 in polynomial time with non-negligible advantage then this adversary
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can distinguish between the distributions Aq,s,DZ,αq and Zn+1
q with non-negligible advantage over

the choice of s, and then be used to solve the decisional variant of LWE. Assume that there
exists a probabilistic polynomial-time adversary A, which given a public key (A,b) sampled from
(Aq,s,DZ,αq )m can guess the plaintext with probability at least 1/2 + 1/poly(n) for non-negligible
subset of secrets s. Now assume that we give to this adversary A a pair (A,b) uniformly sampled
in Zm×nq × Zm instead of an LWE sampled public key. According to the LHL, the distribution
of (A,b, rTA, rTb) is essentially uniform. As a consequence the ciphertext of 0 and 1 will be
statistically indistinguishable for A.

Recall that an instance of the decisional LWE problem is a pair (A,b) sampled either
from (Aq,s,DZ,αq)m for a fixed s, either from U(Zm×nq × Zm). The principle is to give to A an
instance of decisional LWE as the public key, and to use it to encrypt a bit given to A. If A
guesses correctly with a sufficiently large probability, then we know it was an LWE instance,
otherwise it was a random instance.

3.1.3 Dual-Regev encryption scheme

Description. In 2008, Gentry, Peikert and Vaikuntanathan [GPV08] described another encryp-
tion scheme based on LWE called Dual-Regev. The word “dual” is used to refer to the fact
that this scheme is obtained by switching the Encryption and Decryption algorithms of Regev’s
scheme, as illustrated in figure 3.4. This encryption is used for more advanced encryptions scheme,
as in the Identity Based Encryption [GPV08].

Let n, m, and q be integers with q prime and m ≥ 4(n+ 1) log2 q, and α be in (0, 1/(8m)). Users
share a matrix A←↩ U(Zm×nq ).
KeyGen: Given the parameters n,m, q and α and the matrix A.

• Secret key: a vector r←↩ U({0, 1}m).
• Public key: a vector yT = rTA mod q.

Encryption: Given the parameters, the matrix A, a message M ∈ {0, 1} and a public key y.
Sample s←↩ U(Znq ), e←↩ DZm,αq and e′ ←↩ DZ,αq. The ciphertext is

(As + e,yT s + e′ + bq/2c ·M) ∈ Zmq × Zq.

Decryption: Given the parameters, the matrix A, a ciphertext (b, c) and a secret key r. Compute
c − rTb. The decryption is 0 if the result is closer to 0 than to bq/2c. Otherwise the
decryption is 1.

Figure 3.3: Dual Regev encryption scheme.

The principle of this scheme is to give as a public key a vector yT = rTA mod q and to keep r
as a secret key. One then uses LWE to encrypt a message: choose a uniform s, and the ciphertext
(b, c) is exactly (m+ 1) rows of a LWE sample for the matrix A with an additional row y as left
member. To decrypt (b, c), one just has to compute:

c− rTb = yT s + e′ + bq/2c ·M − rT (As + e) = e′ − rTe + bq/2c ·M.

As in Regev’s encryption, the parameter α has been chosen for e′ − rTe to be small compared
to bq/2c, which allows to recover the message M .
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Regev dual-Regev
KeyGen :

,A b = A
s

+ e ,A

y = r

A

Enc : with = bq/2e ·M

r

A b +

0

A

y

s
+ e

e′

+ 0

Figure 3.4: Comparison between Regev’s encryption and Dual-Regev encryption.

Security. This scheme is IND-CPA secure under the hardness of the LWE problem. The full
proof is provided in the original description [GPV08]. The security arguments are the same as
for Regev’s encryption scheme, but are used in a different order.

The LHL gives that the public key (A,y) is computationally indistinguishable from a uniform
distribution. As a consequence, the pair (As+e,yT s+e′) used during the encryption is essentially
distributed as (m + 1) LWE samples Aq,s,DZ,αq for a vector s. Given a ciphertext (b, c), the
distribution of (A,b,y, c) is computationally indistinguishable from a uniform distribution under
the hardness of decisional LWE.

Remark 3.4. Those two schemes are only IND-CPA secure and not IND-CCA secure. There
exists lattice-based encryption schemes which are IND-CCA secure under the hardness of LWE
[ABB10a, Pei09, MP12], but we will not describe them here.

3.2 Signature

We first give the cryptographic definition of a signature scheme and associated notions of security.
Then we define the notion of trapdoor lattices and we describe three lattice-based signature
schemes [GPV08, CHKP10, Boy10]. The security of those signatures is based on the hardness of
the SIS problem.

3.2.1 Cryptographic definition

We start with a formal definition for a signature scheme.
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Definition 3.5 (Signature). Let λ be the security parameter. A signature scheme Σ is given by
three probabilistic polynomial time algorithms:

KeyGen(1λ)→ (vk, sk). This algorithm takes λ as input and outputs a pair of keys (vk, sk) which
are the verification key (public) and the associated signing key (secret).

Sign(1λ, sk,M)→ σ. The encryption algorithm takes as input the security parameter λ, a signing
key sk and a message M ∈ {0, 1}∗. It outputs a signature σ ∈ {0, 1}∗.

Verify(1λ, vk,M, σ)→ {accept, reject}. The decryption algorithm takes as input the security
parameter λ, a verification key vk, the message M , and a signature σ. It either accepts or
rejects.

This signature protocol must be correct, i.e., for any λ large enough and all messageM ∈ {0, 1}∗,
if (vk, sk)← KeyGen(1λ) then Verify(1λ, vk, Sign(1λ, sk,M)) = accept with probability negligibly
close from 1 over the choice of the randomness used to sign the message.

Security. There are three main types of security used for signature schemes: the (static)
existential unforgeability against chosen message attack (EU-CMA) and the strong unforgeability
against chosen message attack. The security of a signature scheme is defined in Figure 3.5.

1. Setup. The challenger runs KeyGen(1λ) to generate (vk, sk), then gives vk to the adversary A.

2. Queries. Adversary A can make the following queries:

• Sign: query to sign a message Mi, the challenger returns σi = Sign(1λ, sk,Mi).

3. Forgery: Eventually, A outputs a message M∗ and a signature σ∗. The adversary wins the
game if Verify(1λ, vk,M∗, σ∗) = accept and M∗ 6= Mi for all i.

Figure 3.5: EU-CMA security game.

In the static (by opposition to adaptive) EU-CMA security game, the attacker give the list of
signature queries before receiving the verification key. In the strong unforgeability against chosen
message attack variant, the adversary wins if Verify(1λ, vk,M∗, σ∗) = accept and (M∗, σ∗) 6=
(Mi, σi) for all i. The advantage of the adversary is defined by

AdvEU−CMA
Σ (A) =

∣∣∣Pr
(
ExpEU-CMA

Σ (A) = win
)
− 1/2

∣∣∣ .
A signature scheme is EU-CMA (respectively for the strong variant) secure if any probabilistic

polynomial adversary against the scheme has a negligible advantage in this security game.
Remark 3.6. As for encryption scheme, we defined a signature scheme for any M ∈ {0, 1}∗, note
that the size of the message can also be fixed by the scheme.

3.2.2 Trapdoors for lattices
The following signature schemes, as many cryptographic primitives, use the notion of full
trapdoor for lattices [Ajt99, AP11]. Note that there exists signature schemes that do not use
trapdoors [Lyu12, GLP12] and that those signatures are asymptotically more efficient. Otherwise,
as we mentioned before, we choose to describe those particular signatures because we use them in
our constructions of Chapters 6.4.3 and 8.
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Definitions and short vectors. Let m ≥ n ≥ 1 and q ≥ 2. For a matrix A ∈ Zm×nq and a
vector u ∈ Zn, we define the m-dimensional lattices:

Λq(A) = {y ∈ Zn : y = xT ·A mod q for some x ∈ Zm}.
Λ⊥q (A) = {x ∈ Zm : xT ·A = 0 mod q},

The lattice Λq(A) is generated by the rows of the matrix A, the lattice Λ⊥q (A) contains all
vectors orthogonal to the matrix A modulo q. Note that those two lattices are m-dimensional
lattices as qZm ⊆ Λq(A) ⊆ Zm and qZm ⊆ Λ⊥q (A) ⊆ Zm. We also note that find a short vector
in those lattices, for a random matrix A, is a hard problem: given A, finding a non-zero short
vector in Λ⊥q (A) corresponds exactly to solve the SIS problem (and is related to the decisional
LWE problem, as explained further).

A short vector in one of those two lattices may be viewed as a “partial trapdoor” for the
LWE problem. For example, given (A,b) an instance of the decisional LWE problem: The goal
is to distinguish between (Aq,s,Dαq )m and a uniform distribution in Zm. If we are given a short
element x ∈ Λ⊥q (A), i.e., such that xT ·A = 0 mod q, then to solve the LWE problem one can
simply multiply b by xT :

• If b is uniform in Zmq , then xTb will also be uniform in Zq,

• If b = As + e with e←↩ Dαq, then xTb = xT (As + e) = xTe: as x and e are small compared
to q, xTe is also small.

Then given a short element in Λ⊥q (A), one can have a non-negligible advantage in solving the
decisional version of the LWE problem. But this short element does not allow to solve the
computational version as we cannot find the secret s.

Short basis of Λ⊥
q (A). A full trapdoor for LWE is a short basis of Λ⊥q (A). As we just explain,

given A it is hard to find such a basis but on the other hand, one can jointly sample A and a
short basis of Λ⊥q (A) simultaneously as shown in [AP11].

Lemma 3.7 ([AP11, Th. 3.2]). There exists a PPT algorithm TrapGen that takes as inputs 1n,
1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a matrix A ∈ Zm×nq and a basis TA

of Λ⊥q (A) such that A is within statistical distance 2−Ω(n) to U(Zm×nq ), and ‖T̃A‖ ≤ O(
√
n log q).

The principle is to use the LHL to sample rows of TA together with rows of A. An example
is given in Figure 3.6. To add a row to TA, one samples a uniform r and then computes rTAi

for all i (where Ai are the columns of A), and then the last row of A is (−rTAi mod q)i∈[n]. As
r is uniformly sampled, the new row of A is also uniformly distributed.

Micciancio and Peikert [MP12] recently proposed a more efficient approach for this combined
task, which should be preferred in practice. Lemma 3.7 was later extended by Gordon et
al. [GKV10] so that the columns of A lie within a prescribed linear vector subspace of Znq (for q
prime).

Sample a short vector given a short basis. Lemma 3.7 is often combined with the sampler
from Lemma 1.24 which allows to sample Gaussian distributions with lattice support given a
sufficiently short basis of the lattice.

As a consequence, sampling using GPVSample with input the short basis TA of the lattice
Λ⊥q (A), and a parameter s allows to find a non-zero vector x ∈ Zm such that xTA = 0 mod q
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2 −3 3 0 −1 1 4 −3 0
3 −2 −4 −1 −2 −2 4 2 0
0 4 4 −1 4 −3 1 1 0
1 0 0 0 1 8 0 0 0
5 4 2 −4 −4 −2 1 −3 0
−5 1 3 −1 −3 4 6 2 0

1 3 −6 6 4 −5 1 −2 0
−4 3 −4 −7 −1 −2 3 −6 0

1 5 −2 2 0 6 1 −3 1


·



185 97 202
146 148 11
208 219 164
218 173 117
211 176 187
79 255 112
47 136 232
204 172 58
184 161 135


= 0 mod 257.

Figure 3.6: Example for TA and A with q = 257 and n = 3.

and ‖x‖ ≤ s
√
m with overwhelming probability (by Lemma 1.36, as x is sampled from a discrete

Gaussian with parameter s).

Remark 3.8. We recall the the algorithm GPVSample has a condition on the parameter s: it
requires s ≥ ‖B̃‖ ·

√
logn, where B is the basis of the support lattice. Then to sample a short

element in a lattice, one need a somewhat short basis of this lattice. The particular case of Zn
for n > 0 allows to find short elements in Zn.

Now given A ∈ Zm×nq , u ∈ Zmq and a short basis TA of Λ⊥q (A), it is possible to find a short
vector x such that xTA = uT mod q, we proceed as follows:

• Take any x0 such that xT0 A = uT mod q (using linear algebra),

• Sample x1 ←↩ DΛ⊥q (A),s,x0 , we have with overwhelming probability:

{
x1 ∈ Λ⊥q (A)
‖x1 − x0‖ ≤

√
ms

,

• Return x = x1 − x0, we have with overwhelming probability:{
xTA = uT mod q
‖x‖ ≤

√
ms

.

The following lemma states that an element sampled from a discrete Gaussian distribution
with a parameter large enough multiplied by a matrix A uniform in Zm×nq will give an almost
uniform vector. This lemma is very used for signature scheme as it will give the same distribution
for (u,x) if one sample a vector u uniform and use a trapdoor to find a short x such that
uT = xTA mod q and if one sample a small vector x in Zm and then compute uT = xTA mod q.

Lemma 3.9 ([GPV08, Corollary 5.4]). Let n and q ≥ 2 be integers. Let m ≥ 2n log q, and
σ ≥ ω(

√
logm). For all but a 2q−n fraction of all A ∈ Zn×mq , for x←↩ DZm,σ, the distribution

of uT = xT ·A mod q is statistically close to uniform over Znq . Moreover, let t be an arbitrary
element such that uT = tT ·A mod q, then the conditional distribution of x given u is exactly
t +DΛ⊥q (A),σ,−t.
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Randomize and extend. Cash et al. [CHKP10] showed how to use GPVSample to randomize
the basis of a given lattice. The following statement is obtained by using Lemma 1.24 in the
proof of [CHKP10].

Lemma 3.10 (Adapted from [CHKP10, Le. 3.3]). There exists a PPT algorithm RandBasis that
takes as inputs a basis B of a lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖ · Ω(

√
logn), and outputs a

basis C of L satisfying ‖C̃‖ ≤
√
nσ with probability ≥ 1− 2−Ω(n). Further, the distribution of C

is independent of the input basis B.

Finally, [CHKP10] also gave an algorithm that extends a trapdoor for A ∈ Zm×nq to a trapdoor
of any B ∈ Zm′×nq whose top m× n submatrix is A.

Lemma 3.11 ([CHKP10, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes as inputs
a matrix B ∈ Zm′×nq whose first m rows span Znq , and a basis TA of Λ⊥q (A) where A is the
top m× n submatrix of B, and outputs a basis TB of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

Given A ∈ Zm×n, a basis TA of Λ⊥q (A) and a matrix B where A is the top m× n submatrix
of B, the principle is to construct a basis TB of Λ⊥q (A) as showed in Figure 3.7 where the si are
chosen such that −sTi ·A = bTi mod q for all m+ 1 ≤ i ≤ m′.

TA 0
sTm+1
. . .
sTm′

Im′−m+1

 ·


A
bTm+1
. . .

bTm′

 = 0 mod q,

Figure 3.7: Extend a trapdoor: construction of TB.

Note that ‖T̃B‖ ≤ ‖T̃A‖ even if the si are not short, as T̃A is full-rank and

T̃B =


T̃A 0
...
0
...

Im′−m+1

 .

Adding constraints. Another interesting property showed in [GKV10] is that one can also
sample a basis A and trapdoor TA given matrix B and c and conditioned to the fact that
BT ·A = C mod q.

Lemma 3.12. There exists a PPT algorithm SuperSamp that takes as inputs matrices B ∈ Zm×nq

and C ∈ Zn×nq such that the rows of B span Znq , m ≥ n ≥ 1, and q ≥ 2 prime such that
m ≥ Ω(n log q). It outputs A ∈ Zm×nq and a basis TA of Λ⊥q (A) such that A is within statistical
distance 2−Ω(n) to U(Zm×nq ) conditioned on BT ·A = C, and ‖T̃A‖ ≤ O(

√
mn log q logm).

Proof. The algorithm is a simple extension of the one in [GKV10]. It first partitions B into
matrices B1 ∈ Zm1×n

q and B2 ∈ Zn×nq , with m1 = m− n, such that B2 is invertible over Zq and
BT = [BT

1 |B
T
2 ]. Such a partition can always be found by re-arranging the rows of B if necessary.

The execution of GenSuperSamp(1n, 1m, q,B,C) then proceeds with the following steps.
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1. Generate (A1,T1) ← TrapGen(1n, 1m1 , q). Return ⊥ if the rows of A1 ∈ Zm1×n
q do not

span Znq .
2. Compute A2 = B−T2 · (C−BT

1 ·A1) mod q. Note that

A =
[
A1
A2

]
satisfies BT ·A = C mod q.

3. Extend T1 ∈ Zm1×m1 to have a basis T ∈ Zm×m for A using the basis delegation algorithm
from Lemma 3.11. Then, re-randomize T′ to obtain T′′ using the basis randomization algorithm
RandBasis.

The rest of the proof is exactly identical to the proof of Lemma 4 in [GKV10].
Now that we described all the properties of trapdoors that we will use, we will start describing

the three signature schemes.

3.2.3 GPV signature
Description. The following signature scheme is described in [GPV08, Section 5.3.2].

Let n,m and q be integers such thatm = Ω(n log q), and let L̃ = O(
√
n log q) and s = L̃·ω(

√
logn).

Choose a hash function H : {0, 1}∗ → Znq which will be modelled as a random oracle.
KeyGen(1n, 1m)→ (vk, sk). Given the parameters n,m, q and s.

Generates (A,TA)← TrapGen(1n, 1m, q), where A ∈ Zm×n is negligibly close from uniform
and TA is a basis for Λ⊥q (A) (with ‖T̃A‖ ≤ O(

√
n log q)).

∗ Verification key: vk = A.
∗ Signing key: sk = TA.

Sign(1n, 1m, sk,M ∈ {0, 1}∗)→ v. Given the parameters n,m, q and s, a signing key sk = TA
and a message M ∈ {0, 1}∗. Generate

v← GPVSample(TA,H(M), s),

i.e., a short v such that vTA = H(M) mod q. Output v.
Verify(1n, 1m, vk, v)→ {accept, reject}. Given the parameters n,m, q and s, a verification key

vk = A and a signature u. Accept if, and only if, v 6= 0, ‖v‖ ≤ s ·
√
m and vTA =

H(M) mod q.

Figure 3.8: GPV signature scheme.

The principle of this scheme is to generate a public basis A together with a trapdoor TA
which stay secret. To sign a message, the hash function H and the message M are used to create
a random u = H(M). Given this random element (which depends on the message), a signature
will be a short vector v such that vTA = u mod q. We saw in the previous section that with the
trapdoor of A such a vector is easy to find. Finally to verify a signature, one cheeks if it satisfies
all the corresponding conditions. Note that this scheme is correct only with high probability.

Security. As proven in [GPV08], this signature is strongly EU-CMA secure under the hardness
of the ISIS or SIS problem in the Random Oracle Model. We sketch here the proof in [GPV08]. If
we assume that there exists an adversary A which breaks the EU-CMA security with probability ε,
we construct an adversary S that breaks the SIS problem with probability negligibly close to ε.
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Given a public key, the adversary S simulates the random oracle and the signing queries for A.
We also assume, without loss of generality, that A queries H on every message m before making a
signing query on m. If A queries H on M : S sample uM from DZm,s (which is a short element),
and compute tM = uTm ·A mod q. It stores (M,um) and outputs H(M) = tM . If A queries
Sign on M : S looks in the local storage for (M,uM ) and returns uM (which is statistically close
to a real signature, see Lemma 3.9). When A produces a forgery (M∗,u∗) , S finds (M∗,uM∗)
in the local storage, and compute u = u∗ − uM∗ . If A made a signature query on M∗, u is
non-zero because (M∗,u∗) is a forgery, otherwise A made a hash query on M∗, so S computed
uM∗ by sampling it from a discrete Gaussian, and it has min-entropy ω(logn) by Lemma 1.35,
thus u∗ 6= uM∗ . In both cases, it is a solution to the SIS problem.

3.2.4 Bonsai signature

Cash et al. [CHKP10] introduced the first signature scheme that is secure in the standard model
under the hardness of SIS. Their scheme relies on a novel structure of random hard lattices: the
Bonsai tree.

Description. The following signature scheme is described in [CHKP10, Section 4.2].

Let n,m and q be positive integers such that m = Ω(n log q), and let L̃ = Ω(
√
n log q) and s =

L̃ · ω(
√

logn). Also let ` be the message length.
KeyGen(1n, 1m)→ (vk, sk). Given the parameters n,m, q, s and `.

Generates (A0,TA0) ← TrapGen(1n, 1m, q), where A0 ∈ Zm×n is negligibly close from
uniform and TA0 is a basis for Λ⊥q (A0) (with ‖T̃A0‖ ≤ O(

√
n log q)). Then for each

(b, j) ∈ {0, 1} × [`], sample independent A(b)
j ←↩ U(Zm×n).

∗ Verification key: A pair vk = (A0, {A(b)
j }(b,j)∈{0,1}×[`]).

∗ Signing key: A pair sk = (TA0 , vk).
Sign(1n, 1m, sk,M ∈ {0, 1}`)→ v. Given the parameters n,m, q, s and `, a signing key sk =

(TA0 , vk) and a message M ∈ {0, 1}`. Let

AM =


A0

A(M [1])
1
. . .

A(M [`])
`

 ∈ Z(`+1)m×n
q .

where M [1], . . . ,M [`] are the bits of M . Generate

v← GPVSample(ExtBasis(TA0 ,AM ), 0, s),

i.e., a short v such that vTAM = 0 mod q. Output v.
Verify(1n, 1m, vk, v)→ {accept, reject}. Given the parameters n,m, q, s and `, a verification key

vk = (A0, {A(b)
j }) and a signature v. Let AM be as above. Accept if, and only if, v 6= 0,

‖v‖ ≤ s ·
√

(`+ 1)m, and v ∈ Λ⊥q (AM ).

Figure 3.9: Bonsai signature scheme.
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If the message space is {0, 1}`, then the signer publishes a Bonsai tree, that is a matrix
A =

[
A0
∣∣A(0)

1
∣∣A(1)

1
∣∣ . . . ∣∣A(0)

`

∣∣A(1)
`

]T ∈ Z(2`+1)m×n
q , where the “root” A0 ∈ Zm×nq is generated

together with a trapdoor, and the “main tree”
[
A(0)

1
∣∣A(1)

1
∣∣ . . . ∣∣A(0)

`

∣∣A(1)
`

]
is uniformly random in

Z2`m×n
q . Then, to sign a message M = M [1] . . .M [`] ∈ {0, 1}`, the signer uses the secret trapdoor

to produce a signature z ∈ Z(`+1)m, which is a small vector satisfying zT ·AM = 0 mod q, where
AM is a subtree defined by M . An example is given in Figure 3.10.

A0

A(0)
1 A(1)

1

A(0)
2 A(1)

2

A(0)
` A(1)

`

Figure 3.10: Bonsai Tree AM for M = 11 · · · 00.

Security. As shown in [CHKP10], this signature scheme is static EU-CMA secure under the
hardness of the SIS problem. As for the GPV signature one can see that forging a signature for a
given message without the trapdoor is exactly solving the SIS problem for the matrix AM .

Rückert [Rüc10b] later demonstrated that the Bonsai signature can be modified to satisfy the
strong unforgeability security level. In his proposal, the public key additionally contains a vector
u←↩ U(Znq ), and the signature is a small vector v satisfying vT ·AM = uT mod q.

3.2.5 Boyen’s signature
Boyen [Boy10] introduced another signature scheme that is secure in the standard model. We
describe here a variant, given in [MP12, Se. 6.2].

As in the Bonsai Tree signature, the signer and the verifier compute a matrix AM which
depends on the message M and on `+ 1 (instead of 2`+ 1 in the Bonsai Tree) public matrices.
Note that compared to the one in the previous signature, this matrix is smaller (it has size 2m×n
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Let n,m and q be positive integers such thatm = Ω(n log q), L̃ = Ω(
√
n log q) and s = L̃·ω(

√
logn)

and let ` be the message length.
KeyGen(1λ)→ (vk, sk). Given the parameters n,m, q, s and `.

Generates (A,TA)← TrapGen(1n, 1m, q), where A ∈ Zm×n is negligibly close from uniform
and TA is a basis for Λ⊥q (A) (with ‖T̃A‖ ≤ O(

√
n log q)). Then for each j from 0 to `,

sample independent Aj ←↩ U(Zm×n).
∗ Verification key: A pair vk = (A, {Aj}`j=0).
∗ Signing key: A pair sk = (TA, vk).

Sign(1λ, sk,M ∈ {0, 1}`)→ v. Given the parameters n,m, q, s and `, a signing key sk = (TA0 , vk)
and a message M ∈ {0, 1}`. Let

AM =
[

A
A0 +

∑`
j=1M [j]Aj

]
∈ Z2m×n

q ,

where M [1], . . . ,M [`] are the bits of M . Generate

v← GPVSample(ExtBasis(TA,AM ), 0, s),

i.e., a short v such that vTAM = 0 mod q. Output v.
Verify(1n, 1m, vk, v)→ {accept, reject}. Given the parameters n,m, q, s and `, a verification key

vk = (A0, {A(b)
j }) and a signature v. Let AM be as above. Accept if, and only if, v 6= 0,

‖v‖ ≤ s ·
√

2m, and v ∈ Λ⊥q (AM ).

Figure 3.11: Boyen’s signature scheme.

instead of (`+ 1)m× n, where ` may be large). Given this matrix AM , the principle is still the
same: use the trapdoor of the root A to find a trapdoor of AM and then, given this trapdoor,
find a short vector in Λ⊥q (AM ).

Security. This signature scheme is EU-CMA secure based on the hardness of the SIS prob-
lem [Boy10].
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Part Two

Worst-Case to Average-Case Reductions for
Lattice Problems

Starting with Ajtai [Ajt96] and with Regev [Reg05], the hardness results of the Small Integer
Solution problem and the Learning With Errors problem are the foundation of lattice-based
cryptography. Indeed the security of a major part of the existing cryptosystems is based on
those two problems and on their variants. In this second part of the thesis, we describe several
worst-case to average-case reductions for variants of the SIS and the LWE problem.

Chapter 4 is dedicated to the Learning With Error problem. The results of this chapter have
been published in [BLP+13], which is a joint work with Z. Brakerski, C. Peikert, O. Regev and
D. Stehlé. We show that LWE is classically at least as hard as standard worst-case lattice problems,
even with polynomial modulus. Previously, this was only known under quantum reductions or
for an exponential modulus. Our techniques capture a tradeoff between the dimension and the
modulus of LWE instances, leading to a much better understanding of the landscape of the
problem. The proof is inspired by techniques from several recent cryptographic constructions,
most notably fully homomorphic encryption schemes.

We then study two variants of SIS and LWE. The efficiency of schemes based on SIS and
LWE can be drastically improved by switching the hardness assumptions to the more compact
Ring-SIS and Ring-LWE problems. However, this change of hardness assumptions comes along
with a possible security weakening: SIS and LWE are known to be at least as hard as standard
(worst-case) problems on euclidean lattices, whereas Ring-SIS and Ring-LWE are only known to
be at least as hard as their restrictions to special classes of ideal lattices, corresponding to ideals of
some polynomial rings. Chapter 5 is a joint work with D. Stehlé and is derived from [LS]. In this
chapter, we define the Module-SIS and Module-LWE problems , which bridge SIS with Ring-SIS,
and LWE with Ring-LWE, respectively. We prove that these average-case problems are at least as
hard as standard lattice problems restricted to module lattices (which themselves bridge arbitrary
and ideal lattices). As these new problems enlarge the toolbox of the lattice-based cryptographer,
they could prove useful for designing new schemes. Importantly, the worst-case to average-case
reductions for the module problems are (qualitatively) sharp, in the sense that there exist converse
reductions. This property is not known to hold in the context of Ring-SIS/Ring-LWE: Ideal
lattice problems could reveal easy without impacting the hardness of Ring-SIS/Ring-LWE.
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Chapter 4

Classical Hardness of LWE

To summarize the hardness results of Chapter 2, which pre-date the work described in this
chapter (corresponding to a joint work with Z. Brakerski, C. Peikert, O. Regev, and D. Stehlé,
published in [BLP+13]), the existence of an efficient algorithm for LWE with polynomial modulus
was only known to imply an efficient quantum algorithm for lattice problems, or an efficient
classical algorithm for a non-standard lattice problem. While both consequences are unlikely,
they are arguably not as earth-shattering as an efficient classical algorithm for lattice problems.
Hence, some concern about the hardness of LWE persisted, tainting the plethora of cryptographic
applications based on it.

We provide the first classical hardness reduction of LWE with polynomial modulus. Our
reduction is the first to show that the existence of an efficient classical algorithm for LWE with
any subexponential modulus would indeed have earth-shattering consequences: it would imply an
efficient algorithm for worst-case instances of standard lattice problems.

Theorem 4.1 (Informal). Solving n-dimensional LWE with poly(n) modulus implies an equally
efficient solution to a worst-case lattice problem in dimension

√
n.

As a result, we establish the hardness of all known applications of polynomial-modulus LWE
based on classical worst-case lattice problems, previously only known under a quantum assumption.
This result is formally given in Theorem 4.2.

Techniques. Even though our main theorem has the flavor of a statement in computational
complexity, its proof crucially relies on a host of ideas coming from recent progress in cryptography,
most notably recent breakthroughs in the construction of fully homomorphic encryption schemes.

At a high level, our main theorem is a “modulus reduction” result: we show a reduction from
LWE with large modulus q and dimension n to LWE with (small) modulus p = poly(n) and
dimension n log2 q. Theorem 4.1 now follows from the main result in [Pei09], which shows that
the former problem with q = 2n is as hard as n-dimensional GapSVP. We note that the increase
in dimension from n to n log2 q is to be expected, as it essentially preserves the number of possible
secrets (and hence the running time of the naive brute-force algorithm).

The main idea in modulus reduction is to map Zq into Zp through the naive mapping that
sends any a ∈ {0, . . . , q − 1} to bpa/qc ∈ {0, . . . , p − 1}. This basic idea is confounded by two
issues. The first is that if carried out naively, this transformation introduces rounding artifacts
into LWE, ruining the distribution of the output. We resolve this issue by using a more careful
Gaussian randomized rounding procedure (Section 4.2). A second serious issue is that in order
for the rounding errors not to be amplified when multiplied by the LWE secret s, it is essential to
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assume that s has small coordinates. A major part of our reduction (Section 4.3) is therefore
dedicated to showing a reduction from LWE (in dimension n) with arbitrary secret in Znq to
LWE (in dimension n log2 q) with a secret chosen uniformly over {0, 1}. This follows from a
careful hybrid argument (Section 4.3.3) combined with a hardness reduction to the so-called
“extended-LWE” problem, which is a variant of LWE in which we have some control over the error
vector (Section 4.3.2). We stress that even though our proof is inspired by and has analogues in
the cryptographic literature, the details of the reductions are very different.

In particular, the idea of modulus reduction plays a key role in recent work on fully homo-
morphic encryption schemes, giving a way to control the noise growth during homomorphic
operations [BV11, BGV12, Bra12]. However, since the goal there is merely to preserve the
functionality of the scheme, their modulus reduction can be performed in a rather naive way
similar to the one outlined above, and so the output of their procedure does not constitute a valid
LWE instance. In our reduction we need to perform a much more delicate modulus reduction,
which we do using Gaussian randomized rounding, as mentioned above.

The idea of reducing LWE to have a {0, 1} secret also exists already in the cryptographic
literature: precisely such a reduction was shown by Goldwasser et al. [GKPV10] who were
motivated by questions in leakage-resilient cryptography. Their reduction, however, incurred a
severe blow-up in the noise rate, making it useless for our purposes. In more detail, not being able
to faithfully reproduce the LWE distribution in the output, they resort to hiding the faults in the
output distribution under a huge independent fresh noise, in order to make it close to the correct
one. The trouble with this “noise flooding” approach is that the amount of noise one has to add
depends on the running time of the algorithm solving the target {0, 1}-LWE problem, which
in turn forces the modulus to be equally big. So while in principle we could use the reduction
from [GKPV10] (and shorten our proof by about a half), this would lead to a qualitatively much
weaker result: the modulus and the approximation ratio for the worst-case lattice problem would
both grow with the running time of the {0, 1}-LWE algorithm. In particular, we would not be
able to show that for some fixed polynomial modulus, LWE is a hard problem; instead, in order
to capture all polynomial time algorithms, we would have to take a super-polynomial modulus,
and rely on the hardness of worst-case lattice problem to within super-polynomial approximation
factors. In contrast, with our reduction, the modulus and the approximation ratio both remain
fixed independently of the target {0, 1}-LWE algorithm.

As mentioned above, our alternative to the reduction in [GKPV10] is based on a hybrid
argument combined with a new hardness reduction for the extended-LWE problem, which is a
variant of LWE in which in addition to the LWE samples, we also get to see the inner product
of the vector of error terms with a vector z of our choosing. This problem has its origins in
the cryptographic literature, namely in the work of O’Neill, Peikert, and Waters [OPW11] on
(bi)deniable encryption and the later work of Alperin-Sheriff and Peikert [ASP12] on key-dependent
message security. The hardness reductions included in those papers are not sufficient for our
purposes, as they cannot handle large moduli or error terms, which is crucial in our setting. We
therefore provide an alternative reduction which is conceptually much simpler, and essentially
subsumes both previous reductions. Our reduction works equally well with exponential moduli
and correspondingly long error vectors, a case earlier reductions could not handle.

Broader perspective. As a byproduct of the proof of Theorem 4.1, we obtain several results that
shed new light on the hardness of LWE. Most notably, our modulus reduction result in Section 4.2
is actually far more general, and can be used to show a “modulus expansion/dimension reduction”
tradeoff. Namely, it shows a reduction from LWEin dimension n and modulus p to LWE in
dimension n/k and modulus pk (see Corollary 4.6). Combined with our modulus reduction, this
has the following interesting consequence: the hardness of n-dimensional LWE with modulus q is
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a function of the quantity n log2 q. In other words, varying n and q individually while keeping
n log2 q fixed essentially preserves the hardness of LWE.

Although we find this statement quite natural (since n log2 q represents the number of bits in
the secret), it has some surprising consequences. One is that n-dimensional LWE with modulus 2n
is essentially as hard as n2-dimensional LWE with polynomial modulus. As a result, n-dimensional
LWE with modulus 2n, which was shown in [Pei09] to be as hard as n-dimensional lattice problems
using a classical reduction, is actually as hard as n2-dimensional lattice problems using a quantum
reduction. The latter is presumably a much harder problem, requiring exp(Ω̃(n2)) time to solve.
This corollary highlights an inherent quadratic loss in the classical reduction of [Pei09] (and as a
result also our Theorem 4.1) compared to the quantum one in [Reg09].

A second interesting consequence is that 1-dimensional LWE with modulus 2n is essentially
as hard as n-dimensional LWE with polynomial modulus. The 1-dimensional version of LWE
is closely related to the Hidden Number Problem of Boneh and Venkatesan [BV96]. It is also
essentially equivalent to the Ajtai-Dwork-type [AD97] cryptosystem in [Reg], as follows from simple
reductions similar to the one in the appendix of [Reg10a]. Moreover, the 1-dimensional version can
be seen as a special case of the Ring-LWE problem introduced in [LPR10] (for ring dimension 1,
i.e., ring equal to Z). This allows us, via the ring switching technique from [GHPS12], to obtain
the first hardness proof of Ring-LWE, with arbitrary ring dimension and exponential modulus,
under the hardness of problems on general lattices (as opposed to just ideal lattice problems).
In addition, this leads to the first hardness proof for the Ring-SIS problem [LM06, PR06] with
exponential modulus under the hardness of general lattice problems, via the standard LWE-to-SIS
reduction. (We note that since both results are obtained by scaling up from a ring of dimension 1,
the hardness does not improve as the ring dimension increases.)

A final interesting consequence of our reductions is that (the decision form of) LWE is hard
with an arbitrary huge modulus, e.g., a prime; see Corollary 4.5. Previous results (e.g., [Reg09,
Pei09, MM11, MP12]) required the modulus to be smooth, i.e., all its prime divisors had to be
polynomially bounded.

4.1 Classical Hardness of LWE

In this section we give the formal result that we obtain about the classical hardness of the
Learning with Errors problem and we sketch the proof of this result.

Theorem 4.2. Let ε(n) = n−ω(1), α ∈ (0, 1) and q ≥ 2 such that αq ≥
√
n. There is a

probabilistic polynomial time reduction from solving Gap-SVP√n,γ in polynomial time (in the
worst case, with high probability) to solving LWEn,m,q,α in polynomial time with non-negligible
probability, for any m(n) ≤ poly(n) and γ(n) such that

γ ≥
√
n√

10α ·
√

logn

For α = 1
poly(n) and q ≥ O(

√
n/α), we obtain γ = poly(n).

To prove this result, we proceed by a sequence of reductions described in Figure 4.1. We omit
the number m of samples in the notation of LWE as it is the same for the three LWE variants.

In this figure, the first reduction is the one of Peikert [Pei09] from GapSVP to LWE in the
same dimension but with an exponential modulus (here q = 2

√
n). Then we provide a reduction

from LWE with a secret uniformly chosen in Znq , where n is the dimension of LWE, to binLWE
in dimension n log q but with the same modulus. Finally we give a reduction from binLWE with
an exponential modulus to LWE with a polynomial modulus, which preserves the dimension.
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Gap-SVP√n,poly(n)
Theorem 2.10 LWE√n,2√n, 1

poly(n)
Theorem 4.8 binLWEn,2√n, 1

poly(n)

Corrolary 4.4 LWEn,poly(n), 1
poly(n)

Figure 4.1: Sequence of reductions to prove the classical hardness of LWE.

4.2 Modulus-Dimension Switching

The main results of this section are Corollaries 4.4 and 4.6 below. Both are special cases of the
following technical theorem. We say that a distribution D over Zn is (B, δ)-bounded for some
reals B, δ ≥ 0 if the probability that x← D has norm greater than B is at most δ.

Theorem 4.3. Let m,n, n′, q, q′ ≥ 1 be integers, let G ∈ Zn′×n be such that the lattice Λ =
1
q′G

TZn′ + Zn has a known basis B, and let D be an arbitrary (B, δ)-bounded distribution over
Zn. Let α, β > 0 and ε ∈ (0, 1/2) satisfy

β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε)) · (max{q−1, ‖B̃‖} ·B)2.

Then there is an efficient (transformation) reduction from LWEn,m,q,≤α(D) to LWEn′,m,q′,≤β(G ·
D) that reduces the advantage by at most δ + 14εm.

Here we use the notation ‖B̃‖ from Lemma 1.24. We also note that if needed, the distribution
on secrets produced by the reduction can always be turned into the uniform distribution on Zn′q′ ,
as mentioned after Definition 2.5. Also, we recall that there exists an elementary reduction from
LWEn′,q′,≤β to LWEn′,q′,β (see Lemma 2.12).

Here we state two important corollaries of the theorem. The first corresponds to just
modulus reduction (the LWE dimension is preserved), and is obtained by letting n′ = n, G = I
be the n-dimensional identity matrix, and B = I/q′. For example, we can take q ≥ q′ ≥√

2 ln(2n(1 + 1/ε)) · (B/α) and β =
√

2α, which corresponds to reducing an arbitrary modulus
to almost B/α, while increasing the initial error rate α by just a small constant factor.

Corollary 4.4. For any m,n ≥ 1, q ≥ q′ ≥ 1, (B, δ)-bounded distribution D over Zn, α, β > 0
and ε ∈ (0, 1/2) such that

β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε)) · (B/q′)2,

there is an efficient reduction from LWEn,m,q,≤α(D) to LWEn,m,q′,≤β(D) that reduces the advan-
tage by at most δ + 14εm.

In particular, by using the normal form of LWE (Lemma 2.13), in which the secret has
distribution D = DZn,

√
2αq, we can switch to a power-of-2 modulus with only a small loss in the

noise rate, as described in the following corollary. Together with the known search-to-decision
reduction (Theorem 2.9), this extends the known hardness of (decision) LWE to any modulus q.
Here we use that D = DZn,r is (Cr

√
n log(n/δ), δ)-bounded for some universal constant C > 0,

which follows by taking union bound over the n coordinates. (Alternatively, one could use that it
is (r
√
n, 2−n)-bounded, as follows from Lemma 1.36, leading to a slightly tighter statement for

large n.)

Corollary 4.5. Let δ ∈ (0, 1/2), m ≥ n ≥ 1, q′ ≥ 25. Let also q ∈ [q′, 2q′) be the smallest
power of 2 not smaller than q′ and α ≥

√
ln(2n(1 + 16/δ)/π)/q. There exists an efficient

(transformation) reduction from LWEn,m,q,α to LWEn,m′,q′,≤β where m′ = m− (16n+ 4 ln ln q)
and

β = Cα
√
n
√

log(n/δ) log(m/δ)
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for some universal constant C > 0, that turns advantage of ζ into an advantage of at least
(ζ − δ)/4.

Another corollary illustrates a modulus-dimension tradeoff. Assume n = kn′ for some k ≥ 1,
and let q′ = qk. Let G = In′ ⊗ g, where g = (1, q, q2, . . . , qk−1)T ∈ Zk. We then have
Λ = q−kGTZn′ + Zn. A basis of Λ is given by

B = In′ ⊗


q−1 q−2 · · · q−k

q−1 · · · q1−k

. . . ...
q−1

 ∈ Rn×n;

this is since the column vectors of B belong to Λ and the determinants match. Orthogonalizing
from left to right, we have B̃ = q−1I and so ‖B̃‖ = q−1. We therefore obtain the following corollary,
showing that we can trade off the dimension against the modulus, holding n log q = n′ log q′ fixed.
For example, letting D = DZn,αq (corresponding to a secret in normal form, see Lemma 2.13),
which is (αq

√
n, 2−n)-bounded, the reduction increases the error rate by about a

√
n factor.

Corollary 4.6. For any n,m, q ≥ 1, k ≥ 1 that divides n, (B, δ)-bounded distribution D over Zn,
α, β > 0, and ε ∈ (0, 1/2) such that

β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε)) · (B/q)2,

there is an efficient reduction from LWEn,m,q,≤α(D) to LWEn/k,m,qk,≤β(G · D) that reduces the
advantage by at most δ + 14εm, where G = In/k ⊗ (1, q, q2, . . . , qk−1)T .

Theorem 4.3 follows immediately from the following lemma.

Lemma 4.7. Adopt the notation of Theorem 4.3, and let

r ≥ max{q−1, ‖B̃‖} ·
√

2 ln(2n(1 + 1/ε))/π.

There is an efficient mapping from Tnq × T to Tn′q′ × T, which has the following properties:

• If the input is uniformly random, then the output is within statistical distance 4ε from the
uniform distribution.

• If the input is distributed according to Aq,s,Dα for some s ∈ Zn with ‖s‖ ≤ B, then the output
distribution is within statistical distance 10ε from Aq′,Gs,Dα′ , where (α′)2 = α2+r2(‖s‖2+B2) ≤
α2 + 2(rB)2.

Proof. The main idea behind the reduction is to encode Tnq into Tn′q′ , so that the mod-1 inner
products between vectors in Tnq and a short vector s ∈ Zn, and between vectors in Tn′q′ and
Gs ∈ Zn′ , are nearly equivalent. In a bit more detail, the reduction will map its input vector
a ∈ Tnq (from the given LWE-or-uniform distribution) to a vector a′ ∈ Tn′q′ , so that

〈a′,Gs〉 = 〈GTa′, s〉 ≈ 〈a, s〉 mod 1

for any (unknown) s ∈ Zn. To do this, it randomly samples a′ so that GTa′ ≈ a mod Zn, where
the approximation error will be a discrete Gaussian of parameter r.

We can now formally define the reduction, which works as follows. On an input pair (a, b) ∈
Tnq × T, it does the following:
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• Choose f ← DΛ−a,r using Lemma 1.24 with basis B, and let v = a + f ∈ Λ/Zn. (The coset
Λ− a is well defined since a = ā + Zn is some coset of Zn ⊆ Λ.) Choose a uniformly random
solution a′ ∈ Tn′q′ to the equation GTa′ = v mod Zn. This can be done by computing a basis of
the solution set GTa′ = 0 mod Zn, and adding a uniform element from that set to an arbitrary
solution to the equation GTa′ = v mod Zn.

• Choose e′ ← DrB and let b′ = b+ e′ ∈ T.

• Output (a′, b′).

We now analyze the reduction. First, if the distribution of the input is uniform, then it
suffices to show that a′ is (nearly) uniformly random, because both b and e′ are independent
of a′, and b ∈ T is uniform. To prove this claim, notice that it suffices to show that the coset
v ∈ Λ/Zn is (nearly) uniformly random, because each v has the same number of solutions a′ to
GTa′ = v mod Zn. Next, observe that for any ā ∈ Tnq and f̄ ∈ Λ− ā, we have by Lemma 1.31
(using that r ≥ ηε(Λ) by Lemma 1.28) that

Pr[a = ā ∧ f = f̄] = q−n · ρr (̄f)/ρr(Λ− ā)
∈ C[1, 1+ε

1−ε ] · ρr (̄f). (4.1)

where C = q−n/ρr(Λ) is a normalizing value that does not depend on ā or f̄. Therefore, by
summing over all ā, f̄ satisfying ā + f̄ = v̄, we obtain that for any v̄ ∈ Λ/Zn,

Pr[v = v̄] ∈ C[1, 1+ε
1−ε ] · ρr(q

−1Zn + v̄).

Since r ≥ ηε(q−1Zn) (by Lemma 1.28), Lemma 1.31 implies that Pr[v = v̄] ∈ [ 1−ε
1+ε ,

1+ε
1−ε ]C ′ for

a constant C ′ that is independent of v̄. By Claim 1.3, this shows that a′ is within statistical
distance 1− ((1− ε)/(1 + ε))2 ≤ 4ε of the uniform distribution.

It remains to show that the reduction maps Aq,s,Dα to Aq′,Gs,Dβ . Let the input sample from
the former distribution be (a, b = 〈a, s〉 + e), where e ←↩ Dα. As argued above, the output
a′ is (nearly) uniform over Tn′q′ . So condition now on any fixed value a′ ∈ Tn′q′ of a′, and let
v̄ = GTa′ mod Zn. We have

b′ = 〈a, s〉+ e+ e′ = 〈a′,Gs〉+ e+ 〈−f, s〉+ e′ mod 1.

By Claim 1.3 and (4.1) (and noting that if f = f̄ then a = v̄ − f̄ mod Zn), the distribution of
−f is within statistical distance 1− (1− ε)/(1 + ε) ≤ 2ε of Dq−1Zn−v̄,r. By Lemma 1.46 (using
r ≥
√

2ηε(q−1Zn) and ‖s‖ ≤ B), the distribution of 〈−f, s〉+ e′ is within statistical distance 6ε
from Dt, where t2 = r2(‖s‖2 +B2). It therefore follows that e+ 〈−f, s〉+ e′ is within statistical
distance 6ε from D(t2+α2)1/2 , as required.

4.3 Hardness of LWE with Binary Secret

The following is the main theorem of this section.

Theorem 4.8. Let k, q ≥ 1, and m ≥ n ≥ 1 be integers, and let ε ∈ (0, 1/2), α, δ > 0, be such that
n ≥ (k + 1) log2 q + 2 log2(1/δ), α ≥

√
ln(2n(1 + 1/ε))/π/q. There exist three (transformation)

reductions from LWEk,m,q,α to binLWEn,m,q,≤√10nα, such that for any algorithm for the latter
problem with advantage ζ, at least one of the reductions produces an algorithm for the former
problem with advantage at least

(ζ − δ)/(3m)− 41ε/2−
∑

p|q, p prime

p−k−1 . (4.2)
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By combining Theorem 4.8 with the reduction in Corollary 4.4 (and noting that {0, 1}n is
(
√
n, 0) bounded), we can replace the binLWE problem above with binLWEn,m,q′,β for any q′ ≥ 1

and ξ > 0 where

β :=
(

10nα2 + 4n
πq′2

ln(2n(1 + 1/ξ))
)1/2

,

while decreasing the advantage in (4.2) by 14ξm. Recalling that LWE of dimension k =
√
n and

modulus q = 2k/2 (assume k is even) is known to be classically as hard as
√
n-dimensional lattice

problems (Theorems 2.10 and 2.9), this gives Theorem 4.2. The modulus q′ can be taken almost
as small as

√
n.

For most purposes the sum over prime factors of q in (4.2) is negligible. For instance, in
deriving the formal statement of Theorem 4.1 above, we used a q that is a power of 2, in which
case the sum is 2−k−1 = 2−

√
n−1, which is negligible. If needed, one can improve this by applying

the modulus switching reduction (Corollary 4.5) before applying Theorem 4.8 in order to make q
prime. (Strictly speaking, one also needs to apply Lemma 2.12 to replace the “unknown noise”
variant of LWE given by Corollary 4.5 with the fixed noise variant.) This improves the advantage
loss to q−

√
n−1 which is roughly 2−n.

In a high level, the proof of the theorem follows by combining three main steps. The first, given
in Section 4.3.1, reduces LWE to a variant in which the first equation is errorless. The second,
given in Section 4.3.2, reduces the latter to the intermediate problem extLWE, another variant of
LWE in which some information on the noise elements is leaked. Finally, in Section 4.3.3, we
reduce extLWE to LWE with {0, 1} secret. We note that the first reduction is relatively standard;
it is the other two that we consider as the main contribution of this section. We now proceed
with more details (see also Figure 4.2).

Proof. First, since m ≥ n, Lemma 4.10 provides a transformation reduction from LWEk,m,q,α to
first-is-errorless LWEk+1,n,q,α, while reducing the advantage by at most 2−k+1. Next, Lemma 4.14
with Z = {0, 1}n, which is of quality ξ = 2 by Claim 4.13, reduces the latter problem to
extLWEk+1,n,q,

√
5α,{0,1}n while reducing the advantage by at most 33ε/2. Then, Lemma 4.15

reduces the latter problem to extLWEm
k+1,n,q,

√
5α,{0,1}n , while losing a factor ofm in the advantage.

Finally, Lemma 4.16 provides three reductions to binLWEn,m,q,≤√10nα: two from the latter
problem, and one from LWEk+1,m,q,

√
5nα, guaranteeing that the sum of advantages is at least

the original advantage minus 4mε+ δ. Together with the trivial reduction from LWEk,m,q,α to
LWEk+1,m,q,

√
5nα (which incurs no loss in advantage), this completes the proof.

4.3.1 First-is-errorless LWE
We first define a variant of LWE in which the first equation is given without error, and then show
in Lemma 4.10 that it is still hard.

Definition 4.9. For integers n, q ≥ 1 and an error distribution φ over R, the “first-is-errorless”
variant of the LWE problem is to distinguish between the following two scenarios. In the first, the
first sample is uniform over Tnq ×Tq and the rest are uniform over Tnq ×T. In the second, there is
an unknown uniformly distributed s ∈ {0, . . . , q − 1}n, the first sample we get is from Aq,s,{0}
(where {0} denotes the distribution that is deterministically zero) and the rest are from Aq,s,φ.

Lemma 4.10. For any n ≥ 2, m, q ≥ 1, and error distribution φ, there is an efficient (transfor-
mation) reduction from LWEn−1,m,q,φ to the first-is-errorless variant of LWEn,m,q,φ that reduces
the advantage by at most

∑
p p
−n, with the sum going over all prime factors of q.
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binLWEn,m,q,≤√10nα

LWEk+1,m,q,
√

5nαextLWEm
k+1,n,q,

√
5α,{0,1}n

extLWEk+1,n,q,
√

5α,{0,1}n

1st errorless LWEk+1,n,q,α

LWEk,m,q,α

Lemma 4.15

Lemma 4.14

Lemma 4.10

Lemma 4.16

Figure 4.2: Summary of reductions used in Theorem 4.8.

Notice that if q is prime the loss in advantage is at most q−n. Alternatively, for any number q
we can bound it by ∑

k≥2
k−n ≤ 2−n +

∫ ∞
2

t−ndt ≤ 2−n+2,

which might be good enough when n is large.

Proof. The reduction starts by choosing a vector a′ uniformly at random from {0, . . . , q − 1}n.
Let r be the greatest common divisor of the coordinates of a′. If it is not coprime to q, we abort.
The probability that this happens is at most∑

p prime, p|q

p−n.

Assuming we do not abort, we proceed by finding a matrix U ∈ Zn×n that is invertible modulo
q and whose leftmost column is a′. Such a matrix exists, and can be found efficiently. For
instance, using the extended GCD algorithm, we find an n× n unimodular matrix R such that
Ra′ = (r, 0, . . . , 0)T . Then R−1 · diag(r, 1, . . . , 1) is the desired matrix. We also pick a uniform
element s0 ∈ {0, . . . , q − 1}. The reduction now proceeds as follows. The first sample it outputs
is (a′/q, s0/q). The remaining samples are produced by taking a sample (a, b) from the given
oracle, picking a fresh uniformly random d ∈ Tq, and outputting (U(d|a), b+ (s0 · d)) with the
vertical bar denoting concatenation. It is easy to verify correctness: given uniform samples, the
reduction outputs uniform samples (with the first sample’s b component uniform over Tq), up
to statistical distance 2−n+1; and given samples from Aq,s,φ, the reduction outputs one sample
from Aq,s′,{0} and the remaining samples from Aq,s′,φ, up to statistical distance 2−n+1, where
s′ = (U−1)T (s0|s) mod q. This proves correctness since U, being invertible modulo q, induces a
bijection on Znq , and so s′ is uniform in {0, . . . , q − 1}n.

4.3.2 Extended LWE
We next define the intermediate problem extLWE. (This definition is of an easier problem than
the one considered in previous work [ASP12], which makes our hardness result stronger.)
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Definition 4.11. For n,m, q, t ≥ 1, Z ⊆ Zm, and a distribution χ over 1
qZ

m, the extLWEtn,m,q,χ,Z
problem is as follows. The algorithm gets to choose z ∈ Z and then receives a tuple

(A, (bi)ti=1, (〈ei, z〉)ti=1) ∈ Tn×mq × (Tmq )t × ( 1
qZ)t.

Its goal is to distinguish between the following two cases. In the first, A ∈ Tn×mq is chosen
uniformly, ei ∈ 1

qZ
m are chosen from χ, and bi = AT si + ei mod 1 where si ∈ {0, . . . , q − 1}n

are chosen uniformly. The second case is identical, except that the bi are chosen uniformly in Tmq
independently of everything else.

When t = 1, we omit the superscript t. Also, when χ is Dq−1Zm,α for some α > 0, we replace
the subscript χ by α. We note that a discrete version of LWE can be defined as a special case of
extLWE by setting Z = {0m}. We next define a measure of quality of sets Z.

Definition 4.12. For a real ξ > 0 and a set Z ⊆ Zm we say that Z is of quality ξ if given any
z ∈ Z, we can efficiently find a unimodular matrix U ∈ Zm×m such that if U′ ∈ Zm×(m−1) is
the matrix obtained from U by removing its leftmost column then all of the columns of U′ are
orthogonal to z and its largest singular value is at most ξ.

The idea in this definition is that the columns of U′ form a basis of the lattice of integer
points that are orthogonal to z, i.e., the lattice {b ∈ Zm : 〈b, z〉 = 0}. The quality measures how
“short” we can make this basis.

Claim 4.13. The set Z = {0, 1}m is of quality 2.

Proof. Let z ∈ Z and assume without loss of generality that its first k ≥ 1 coordinates are 1 and
the remaining m− k are 0. Then consider the upper bidiagonal matrix U whose diagonal is all
1s and whose diagonal above the main diagonal is (−1, . . . ,−1, 0, . . . , 0) with −1 appearing k − 1
times. The matrix is clearly unimodular and all the columns except the first one are orthogonal
to z. Moreover, by the triangle inequality, we can bound the operator norm of U by the sum of
that of the diagonal 1 matrix and the off-diagonal matrix, both of which clearly have norm at
most 1.

Lemma 4.14. Let Z ⊆ Zm be of quality ξ > 0. Then for any n, q ≥ 1, ε ∈ (0, 1/2), and
α, r ≥ (ln(2m(1 + 1/ε))/π)1/2/q, there is a (transformation) reduction from the first-is-errorless
variant of LWEn,m,q,α to extLWEn,m,q,(α2ξ2+r2)1/2,Z that reduces the advantage by at most 33ε/2.

Proof. We first describe the reduction. Assume we are asked to provide samples for some z ∈ Z.
We compute a unimodular U ∈ Zm×m for z as in Definition 4.12, and let U′ ∈ Zm×(m−1) be
the matrix formed by removing the first column of U. We then take m samples from the given
distribution, resulting in (A,b) ∈ Tn×mq × (Tq × Tm−1). We also sample a vector f from the
m-dimensional continuous Gaussian distribution Dα(ξ2I−U′U′T )1/2 , which is well defined since
ξ2I − U′U′T is a positive semidefinite matrix by our assumption on U. The output of the
reduction is the tuple

(A′ = AUT ,b′ + c, 〈z, f + c〉) ∈ Tn×mq × Tmq × 1
qZ, (4.3)

where b′ = Ub + f, and c is chosen from the discrete Gaussian distribution Dq−1Zm−b′,r (using
Theorem 1.24).

We now prove the correctness of the reduction. Consider first the case that we get valid
LWE equations, i.e., A is uniform in Tn×mq and b = AT s + e ∈ Tm where s ∈ {0, . . . , q − 1}n is
uniformly chosen, the first coordinate of e ∈ Rm is 0, and the remaining m− 1 coordinates are
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chosen from Dα. Since U is unimodular, A′ = AUT is uniformly distributed in Tn×mq as required.
From now on we condition on an arbitrary A′ and analyze the distribution of the remaining two
components of (4.3). Next,

b′ = Ub + f = A′T s + Ue + f.

Since Ue is distributed as a continuous Gaussian DαU′ , the vector Ue + f is a distributed as
a spherical continuous Gaussian Dαξ. Moreover, since A′T s ∈ Tmq , the coset q−1Zm − b′ is
identical to q−1Zm − (Ue+ f), so we can see c as being chosen from Dq−1Zm−(Ue+f),r. Therefore,
by Lemma 1.43 and using that r ≥ ηε(q−1Zm) by Lemma 1.28, the distribution of Ue + f + c
is within statistical distance 8ε of Dq−1Zm,(α2ξ2+r2)1/2 . This shows that the second component
in (4.3) is also distributed correctly. Finally, for the third component, by our assumption on U
and the fact that the first coordinate of e is zero,

〈z, f + c〉 = 〈z,Ue + f + c〉,

and so the third component gives the inner product of the noise with z, as desired.
We now consider the case where the input is uniform, i.e., that A is uniform in Tn×mq and

b is independent and uniform in Tq × Tm−1. We first observe that by Lemma 1.30, since
α ≥ ηε/m(q−1Z) (by Lemma 1.28), the distribution of (A,b) is within statistical distance ε/2 of
the distribution of (A, e′+ e) where e′ is chosen uniformly in Tmq , the first coordinate of e is zero,
and its remaining m− 1 coordinates are chosen independently from Dα. So from now on assume
our input is (A, e′+ e). The first component of (4.3) is uniform in Tn×mq as before, and moreover,
it is clearly independent of the other two. Moreover, since b′ = Ue′ +Ue+ f and Ue′ ∈ Tmq , the
coset q−1Zm − b′ is identical to q−1Zm − (Ue+ f), and so c is distributed identically to the case
of a valid LWE equation, and in particular is independent of e′. This establishes that the third
component of (4.3) is correctly distributed; moreover, since e′ is independent of the first and
third components, and Ue′ is uniform in Tmq (since U is unimodular), we get that the second
component is uniform and independent of the other two, as desired.

We end this section by stating the standard reduction to the multi-secret (t ≥ 1) case of
extended LWE.

Lemma 4.15. Let n,m, q, χ,Z be as in Definition 4.11 with χ efficiently sampleable, and let
t ≥ 1 be an integer. Then there is an efficient (transformation) reduction from extLWEn,m,q,χ,Z
to extLWEtn,m,q,χ,Z that reduces the advantage by a factor of t.

The proof is by a standard hybrid argument. We bring it here for the sake of completeness.
We note that the distribution of the secret vector s needs to be sampleable but otherwise it plays
no role in the proof. The lemma therefore naturally extends to any (sampleable) distribution of s.

Proof. Let A be an algorithm for extLWEtn,m,q,χ,Z , let z be the vector output by A in the first
step (note that this is a random variable) and let Hi denote the distribution(

A, {b1, . . . ,bi,ui+1, . . . ,ut}, z, {〈z, ei〉}ti=1
)
,

where ui+1, . . . ,ut are sampled independently and uniformly in Tmq . Then by definition Adv[A] =
|Pr[A(H0)]− Pr[A(Ht)]|.

We now describe an algorithm B for extLWEn,m,q,χ,Z : First, B runs A to obtain z and sends
it to the challenger as its own z. Then, given an input (A,d, z, y) for extLWEn,m,q,χ,Z , the distin-
guisher B samples i∗ ←↩ U({1, . . . , t}), and in addition s1, . . . , si∗−1 ←↩ U(Znq ), ui∗+1, . . . ,ut ←↩
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U(Tmq ), e1, . . . , ei∗−1, ei∗+1, . . . , et ←↩ χm. It sets bi = AT · si + ei (mod 1), and sends the
following to A:

(A, {b1, . . . ,bi∗−1,d,ui∗+1, . . . ,ut}, z, {〈z, e1〉, . . . , 〈z, ei∗−1〉, y, 〈z, ei∗+1〉, . . . , 〈z, et〉}) .

Finally, B outputs the same output as A did.
Note that when the input to B is distributed as P0 = (A,b, z, zT · e) with b = AT · s + e

(mod 1), then B feeds A with exactly the distribution Hi∗ . On the other hand, if the input to B
is P1 = (A,u, z, zT · e) with u←↩ U(Tmq ), then B feeds A with Hi∗−1.

Since i∗ is uniform in {1, . . . , t}, we get that

tAdv[B] = t |Pr[B(P0)]− Pr[B(P1)]|

=
∣∣∣∣ t∑
i∗=1

Pr[A(Hi∗)]−
t∑

i∗=1
Pr[A(Hi∗−1)]

∣∣∣∣
= |Pr[A(Ht)]− Pr[A(H0)]|
= Adv[A] ,

and the result follows.

4.3.3 Reducing to binary secret
Lemma 4.16. Let k, n,m, q ∈ N, ε ∈ (0, 1/2), and δ, α, β, γ > 0 be such that n ≥ k log2 q +
2 log2(1/δ), β ≥

√
2 ln(2n(1 + 1/ε))/π/q, α =

√
2nβ, γ =

√
nβ. Then there exist three efficient

(transformation) reductions to binLWEn,m,q,≤α from extLWEmk,n,q,β,{0,1}n , extLWEk,m,q,γ, and
extLWEmk,n,q,β,{0n}, such that if B1, B2, and B3 are the algorithms obtained by applying these
reductions (respectively) to an algorithm A, then

Adv[A] ≤ Adv[B1] + Adv[B2] + Adv[B3] + 4mε+ δ .

Pointing out the transformation reduction from extLWEmk,n,q,β,{0,1}n to extLWEmk,n,q,β,{0n},
the lemma implies the hardness of binLWEn,m,q,≤α based on the hardness of extLWEmk,n,q,β,{0,1}n
and LWEk,m,q,γ .

We note that our proof is actually more general, and holds for any binary distribution of
min-entropy at least k log2 q+2 log2(1/δ), and not just a uniform binary secret as in the definition
of binLWE.

Proof. The proof follows by a sequence of hybrids. Let k, n,m, q, ε, α, β, γ be as in the lemma
statement. We consider z←↩ U({0, 1}n) and e←↩ Dm

α′ for α′ =
√
β2‖z‖2 + γ2 ≤

√
2nβ = α. In

addition, we let A←↩ U(Tn×mq ), u←↩ U(Tm), and define b := AT · z + e (mod 1). We consider
an algorithm A that distinguishes between (A,b) and (A,u).

We let H0 denote the distribution (A,b) and H1 the distribution

H1 = (A,AT z−NT z + ê mod 1),

where N←↩ Dn×m
q−1Z,β and ê←↩ Dm

γ . Using ‖z‖ ≤
√
n and that β ≥

√
2ηε(Zn)/q (by Lemma 1.28),

it follows by Lemma 1.46 that the statistical distance between −NT z+ ê and Dm
α′ is at most 4mε.

It thus follows that
|Pr[A(H0)]− Pr[A(H1)]| ≤ 4mε . (4.4)
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We define a distribution H2 as follows. Let B← Tk×mq and C← Tk×nq . Let Â := qCT ·B+N
(mod 1). Finally,

H2 = (Â, Â
T
· z−NT z + ê) = (Â, qBT ·C · z + ê) .

We now argue that there exists an adversary B1 for problem extLWEmk,n,q,β,{0,1}n , such that

Adv[B1] = |Pr[A(H1)]− Pr[A(H2)]| . (4.5)

This is because H1, H2 can be viewed as applying the same efficient transformation on the distri-
butions (C,A,NT z) and (C, Â,NT z) respectively. Since distinguishing the latter distributions
is exactly the extLWEmk,n,q,β,{0,1}n problem (where the columns of q ·B are interpreted as the m
secret vectors), the distinguisher B1 follows by first applying the aforementioned transformation
and then applying A.

For the next hybrid, we define H3 = (Â,BT · s + ê), for s← Zkq . It follows that

|Pr[A(H2)]− Pr[A(H3)]| ≤ δ (4.6)

by the leftover hash lemma (see Lemma 1.6), since H2, H3 can be derived from (C, qC · z) and
(C, s) respectively, whose statistical distance is at most δ.

Our next hybrid makes the second component uniform: H4 = (Â,u). There exists an
algorithm B2 for LWEk,m,q,γ such that

Adv[B2] = |Pr[A(H3)]− Pr[A(H4)]| , (4.7)

since H3, H4 can be computed efficiently from (B,BT s + ê), (B,u).
Lastly, we change Â back to uniform: H5 = (A,u). There exists an algorithm B3 for

extLWEmk,n,q,β,{0n} such that

Adv[B3] = |Pr[A(H4)]− Pr[A(H5)]| . (4.8)

Eq. (4.8) is derived very similarly to Eq. (4.5): We notice that H4, H5 can be viewed as applying
the same efficient transformation on the distributions (C, Â) and (C,A) respectively. Since
distinguishing the latter distributions is exactly the extLWEmk,n,q,β,{0n} problem (where the
columns of q ·B are interpreted as the m secret vectors), the distinguisher B3 follows by first
applying the aforementioned transformation and then applying A.

Putting together Eq. (4.4), (4.5), (4.6), (4.7), (4.8), the lemma follows.
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Chapter 5

Hardness of Module-SIS and Module-LWE

In this chapter, which is part of a joint work with D. Stehlé, published in [LS], we bridge the
reductions from SIVP to SIS and Id-SIVP to R-SIS on the first hand, and from SIVP to LWE
and Id-SIVP to R-LWE on the second hand. We consider two problems M-SIS and M-LWE,
where the letter M stands for module. A module is an algebraic structure generalizing rings
and vector spaces, whereas module lattices (corresponding to finitely generated modules over
the ring of integers of a number field) generalize both arbitrary lattices and ideal lattices. Note
that M-LWE has recently been introduced (although not studied) in [BGV11], where it is called
Generalized-LWE. We describe two new worst-case to average-case reductions: A reduction from
Mod-SIVP (i.e., SIVP restricted to module lattices) to M-SIS in the proof of Theorem 5.10, and
a (quantum) reduction from Mod-SIVP to M-LWE in both its search and decision versions in the
proofs of Theorems 5.17 and 5.19. We also show that the Mod-SIVP to M-SIS/M-LWE reductions
admit converse reductions (with a module rank degradation): from M-SIS to Mod-SIVP in
Theorem 5.43 and from M-LWE to Mod-SIVP in Theorem 5.44.

The Mod-SIVP to M-SIS and Mod-SIVP to M-LWE reductions are smooth generalizations
of the existing reductions: By setting the module dimension and the field degree appropriately,
we recover the former reductions. When doing so, the conditions on the approximation factor γ
and the modulus q required for the results to hold match with the conditions of the existing
reductions,1 up to logarithmic factors with respect to the lattice dimension. These parameters
quantify the quality of the reductions: The hardness of the SIVP problem is given by the
approximation factor γ, whereas the bit-size of the average-case instances is proportional to log q.

To achieve these results, we carefully combine and adapt the existing reductions and their
proofs of correctness ([GPV08] and [LM06] for M-SIS, and [Reg09] and [LPR10] for M-LWE).
At a high level, the module structure can be seen as a “tensor” between the lattice and ideal
algebraic structures, leading to reductions and proof that can heuristically be seen as “tensors” of
the former reductions and proofs.

On the way, we improve the state-of-the-art results on the hardness of R-SIS and R-LWE.
Concerning R-SIS: We improve the reduction from Id-SIVPγ by allowing for smaller values of q;
this improvement is obtained by adapting a technique based on the Chinese Remainder Theorem
and developed by Lyubashesvky et al. in [LPR10] in the context of R-LWE; its application to
R-SIS was suggested in [LPR10] but left open. Concerning R-LWE: We show that R-LWE is
hard for all sufficiently large q, independently of the arithmetic properties of q with respect to
the ring dimension n; this improvement is obtained by adapting the modulus-switching technique

1with the exception of the recent result of Micciancio and Peikert [MP13] on the hardness of SIS and LWE
with small parameters.
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we developed in Chapter 4 in the context of LWE.

A larger toolbox for cryptographic design. The hardness results for M-SIS and M-LWE possibly
enlarge the toolbox for devising lattice-based cryptosystems. Let us consider small examples.
The following is an instance of M-SIS for which we can prove hardness for specific values of
the parameters n, q and β. Given ai,j ’s sampled uniformly and independently from the uniform
distribution over Zq[x]/(xn + 1), the goal is to find zi’s in Z[x]/(xn + 1) not all zero, with
coefficients smaller than a prescribed bound β and such that:

[
a11 a12 a13
a21 a22 a23

]
·

 z1
z2
z3

 = 0 mod q.

Similarly, our results on M-LWE imply that for specific values of n, q and for a specific error
distribution ψ taking small values in Z[x]/(xn + 1) (or, actually, a specific distribution over such
distributions), the following pair is computationally indistinguishable from uniform over its range: a11 a12

a21 a22
a31 a32

 ,
 a11 a12
a21 a22
a31 a32

 · [ s1
s2

]
+

 e1
e2
e3

 mod q

 ,

where the aij ’s and si’s are sampled uniformly in Zq[x]/(xn + 1), and the ei’s are sampled from ψ.
Note that the existing results on R-LWE and R-SIS already imply, via naive reductions, that

these problems are no easier than some SIVP instances: For example, one can embed an R-SIS
instance into the first row of an M-SIS instance, and generate the other row(s) independently.
However, with this approach, the hardness of the corresponding worst-case instances is related
to n-dimensional instances of SIVP. By tailoring our reduction to the module case, we can show
that the M-SIS instance above is no easier than solving SIVP for a (2n)-dimensional lattice (or,
more generally, a (dn)-dimensional lattice, if the number of rows of the M-SIS matrix is d).

From the cryptographic construction viewpoint, we expect that most constructions based on
R-SIS and R-LWE can be adapted to M-SIS and M-LWE, with an efficiency slowdown (in terms
of memory requirements, communication costs and algorithm run-times) bounded by a constant
factor when d = O(1).

Hedging against a possible non-hardness of Id-SIVP. Our results lead to cryptographic primitives
whose efficiencies are within a constant factor of those based on R-SIS/R-LWE, but for which
the security relies on Mod-SIVP instead of Id-SIVP. We argue here that Mod-SIVP is possibly a
harder problem than Id-SIVP.

As a first observation, we emphasize that there exists a naive reduction from Id-SIVP to
Mod-SIVP, as any Id-SIVP instance can be embedded into a Mod-SIVP instance of higher
dimension (e.g., the Id-SIVP instance may be duplicated into two orthogonal subspaces), but no
converse reduction is currently known.

Further, Id-SIVP has been much less studied than SIVP, and attacks on SIVP working only
in the case of ideal lattices cannot be fully ruled out. Such attacks could, for example, exploit
the multiplicative structure of the ideals, and fail to hold as soon as the rank d of the module is
greater than 1 (i.e., a phase transition between d = 1 and d > 1). Such weaknesses due to the
multiplicative structure actually exist for some lattice problems. Consider for example the task of
estimating, within a factor γ, the euclidean norm of the shortest nonzero vector in the lattice
(known as GapSVPγ). This problem is suspected to be extremely hard in the worst case for values
of γ that are polynomial in the lattice dimension. But it is easy for ideal lattices, as Minkowski’s

58



bound on the lattice minimum is known to be essentially sharp in that case (see, e.g., [PR07,
Se. 6]). Further, we suspect that this problem is hard in the worst case for module lattices with
module rank greater than 1, as it would allow one to efficiently solve two notable problems. For
module rank 2, it would lead to an efficient algorithm for the Decisional Small Polynomial Ratio
problem (DSPR) from [LATV12], inspired from the NTRU encryption scheme [HPS98]. The goal
of DSPR is to determine whether a given h ∈ Zq[x]/(xn + 1) is uniformly sampled or sampled of
the form h = g/f mod q where both f and g have small coefficients. A GapSVP oracle used on the
(rank 2) module {(k1, k2) ∈ (Z[x]/(xn+1))2 : k1h+k2 = 0 mod q} would allow one to solve DSPR:
for a uniform h, the lattice minimum is expected to be of the order of ≈ √nq (as the determinant
is qn and the dimension is 2n), whereas for h = g/f , the minimum is ≤

√
‖f‖2 + ‖g‖2. For module

rank 3, it would lead to an efficient algorithm for R-LWE. With the same notations as above,
R-LWE with three sample pairs consists in deciding whether (a1, b1), (a2, b2), (a3, b3) are uniformly
and independently sampled in (Zq[x]/(xn + 1))2, or whether there exists s ∈ Zq[x]/(xn + 1) such
that bi − ai · s has small coefficients for all i ∈ {1, 2, 3}. In the first case, the lattice minimum of
the (rank 3) module (a1, a2, a3) · Zq[x]/(xn + 1) + (b1, b2, b3) · Zq[x]/(xn + 1) + (qZ[x]/(xn + 1))3

is expected to be of the order of ≈
√
nq1/3 (the determinant is q2n,unless we are in a degenerate

case, which occurs with small probability). In the second case, the minimum is unexpectedly
small. We note that no such phase transition is known for Id-SIVP, but it cannot be ruled out
given our current knowledge.

From an algorithmic viewpoint, attempts [Nap96, FP96, GLM09] have been made to adapt
the existing algorithms for integer lattices to modules over the rings of integers of number fields.
However, no norm bound is known for the output of the algorithm of [FP96], and the results
of [Nap96, GLM09] hold for very limited cases. The main approach to handle these lattices
is to discard their module structure and view the modules as integer lattices of much higher
dimensions [Coh00, FS10].

Related works. Most SIVP to SIS reductions (including ours) consider the euclidean norm.
Peikert [Pei08] described an SIVP to SIS reduction that handles all `p norms. Independently,
many variants of LWE have been shown as hard as Regev’s original LWE: These variants may
consist in sampling the secret vector s from the same distribution as the errors [ACPS09],
in sampling the error vectors from other distributions [Pei09, GKV10] and in relaxing the
conditions on the factorisation of the modulus [MP12, Se. 3] (see also the references therein).
Other cryptographically useful variants of SIS and LWE proven as secure as SIVP include k-
SIS [BF11], ISIS [GPV08], subspace-LWE [KPC+11, Pie12] and extended-LWE [OPW11, ASP12]
and Chapter 4.

In [Pei09] and Chapter 4, Peikert and Brakerski et al. partially dequantized Regev’s proof
of hardness of LWE [Reg09], by proposing a reduction from the decisional GapSVPγ problem
to LWE. Peikert’s classical reduction is restricted to large LWE moduli q (that are additionally
required to be products of many small primes in the case of the decisional variant of LWE), unless
one considers a variant of GapSVP that is somewhat unusual. Peikert’s dequantization carries
over to the module case, by giving a reduction from GapSVP restricted to module lattices to
M-LWE (using Lemma 5.26 from Section 5.2.3). Note that it also carries over to ideal/R-LWE
setting but is meaningless in this situation as GapSVP is easy for ideal lattices and the involved
approximation factors γ (as a good approximation to the minimum known). The reduction of
Brakerski et al. consists of several steps, the first one being Peikert’s reduction. It is thus equally
useless in the case of ideal lattices.

Some computational aspects of module lattices have been investigated in [BP91, FS10] (see
also [Coh00, Ch. 1]). These results show that the additional algebraic structure may be exploited
to obtain compact representations of modules (namely, pseudo-bases) similar to lattice bases in
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Hermite Normal Form and LLL-reduced lattice bases. None hints that SIVP would be any easier
when restricted to module lattices.

Peikert and Rosen [PR07] observed that solving R-SIS exactly consists in finding a short
nonzero vector in a module lattice.

Road-map. In Section 5.1 we give a reduction from Mod-SIVP to M-SIS. Then, in Section 5.2,
we describe a (quantum) reduction from Mod-SIVP to both the computational and the decisional
variants of M-LWE. Finally, we give converse reductions in Section 5.3, i.e., reductions from both
M-SIS and M-LWE to Mod-SIVP.

Note. We refer to Chapter 1, Section 1.2 for algebraic number theory reminders. The ring R is
the ring of integers of a number field K which is also a cyclotomic field, for example one can take
R ' Z[x]/(xn + 1) for n a power of 2.

We propose in this chapter a unified analysis of R-SIS/M-SIS and R-LWE/M-LWE by only
considering the complex canonical embeddings of the ring elements. Note that all prior works
on R-SIS except [PR07] used the polynomial embedding. However, the canonical embedding
representation is mathematically sounder, and the unification leads to a more natural connection
between R-SIS and R-LWE.

5.1 Hardness of Module-SIS

5.1.1 Variants of SIS
The Short Integer Solution problem (SIS) is fully described in Chapter 2, we now consider two
structured variants: Ring-SIS and Module-SIS.

SIS over rings. The R-SIS problem was concurrently introduced in [PR06] and [LM06].

Definition 5.1. The problem R-SISq,m,β is as follows: Given a1, . . . , am ∈ Rq chosen indepen-
dently from the uniform distribution, find z1, . . . , zm ∈ R such that

∑m
i=1 ai · zi = 0 mod q and

0 < ‖z‖ ≤ β, where z = (z1, . . . , zm)T ∈ Rm.

This problem over rings can be interpreted in terms of structured integer matrices. For example,
when n is a power of 2, then R and Rq are isomorphic to Z[x]/(xn + 1) and Zq[x]/(xn + 1)
respectively, and the ring multiplication ai · zi can be written as the multiplication of the vector
of Zn whose entries are the coefficients of zi and, with a nega-circulant matrix whose entries are
derived from the coefficients of ai. In this setup, R-SIS is a variant of SIS where A is restricted
to being block nega-circulant: A = [Rot(a1)| . . . |Rot(am)], with:

Rot(b) :=


b0 −bn−1 · · · −b1
b1 b0 · · · −b2
...

... . . . ...
bn−1 bn−2 · · · b0

 , for b =
n−1∑
i=0

bix
i ∈ R.

SIS over modules. The problem M-SIS generalizes both SIS and R-SIS. We use the following
notations: the variable n denotes the dimension of the ring R and the variable d corresponds
to the rank of the module M ⊆ Rd; we let N = nd denote the dimension of the corresponding
module lattice, and give the complexity statements for N growing to infinity.
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Figure 5.1: Structured A matrix for Module-SIS.

Definition 5.2. The problem M-SISq,m,β is as follows: Given a1, . . . ,am ∈ Rdq chosen indepen-
dently from the uniform distribution, find z1, . . . , zm ∈ R such that

∑m
i=1 ai · zi = 0 mod q and

0 < ‖z‖ ≤ β, where z = (z1, . . . , zm)T ∈ Rm.

Like R-SIS, M-SIS can be interpreted in terms of matrices. In the same setting as above for
R-SIS, it consists in taking a SIS matrix A of the form described in Figure 5.1.

5.1.2 Hardness of Ring-SIS
The hardness of the Ring-SIS problem is proven in [PR06] and [LM06].

Theorem 5.3 (Adapted from [LM06]). For ε(n) = n−ω(1), there is a probabilistic polynomial time
reduction from solving Ideal-GIVPηεγ in polynomial time (in the worst case, with high probability)
to solving R-SISq,m,β in polynomial time with non-negligible probability, for any m(n), q(n), β(n)
and γ(n) such that γ ≥ β

√
n · ω(

√
logn), q ≥ βn1.5 · ω(logn) and m, log q ≤ poly(n).

By using a technique from [LPR10] (namely, the isomorphism between I/qI and Rq described
in Subsection 1.2) into the proof of [LM06], we obtain the following result.

Theorem 5.4. For ε(n) = n−ω(1), there is a probabilistic polynomial time reduction from solving
Ideal-GIVPηεγ in polynomial time (in the worst case, with high probability) to solving R-SISq,m,β
in polynomial time with non-negligible probability, for any m(n), q(n), β(n) and γ(n) such that
γ ≥ β

√
n · ω(

√
logn), q ≥ β

√
n · ω(logn) and m, log q ≤ poly(n).

In the rest of this section, we provide the reduction.
In order to prove that R-SIS (and in Section 5.1 for the new problem M-SIS) is at least as

hard as GIVP restricted to ideal (respectively module) lattices, we use the following intermediate
problem, introduced in [MR04].

Definition 5.5 ([MR04, Definition 5.3]). The Incremental Independent Vectors Problem Inc-
GIVPηεγ , is as follows: Given a tuple (B,S,H) where B is a basis of an n-dimensional lattice,
S ⊆ L(B) is a full-rank set of vectors such that ‖S‖ ≥ γ · ηε(L(B)) and H is a hyperplane, find
h ∈ L(B) \ H such that ‖h‖ ≤ ‖S‖/2.

Theorem 5.6 ([Mic04, Th. 6.3]). For any function ε and γ, there is a probabilistic polynomial
time reduction from solving GIVPηεγ (in the worst case, with high probability) to solving IncGIVPηεγ
(in the worst case, with high probability).
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5. Hardness of Module-SIS and Module-LWE

As the latter reduction preserves the lattice, it induces a reduction from Ideal-GIVPηεγ to
Ideal-IncGIVPηεγ , i.e., IncGIVPηεγ restricted to ideal lattices. To prove Theorem 5.4, we provide a
reduction from Ideal-IncGIVPηεγ to R-SISq,m,β .

Suppose that an oracle O solves R-SISq,m,β in polynomial time with probability n−O(1). The
algorithm for Ideal-IncGIVP proceeds as follows on input (B,S,H). We write I = L(B). Let s
be such that

max
(

2q
γ
,
√

logn
)
‖S‖ ≤ s ≤ q‖S‖

2β
√
n · ω(

√
logn)

• For all ` ≤ m,

– Get a fresh y` distributed as DL(B),s,0 (using Theorem 1.24),
– Let a` = θ−1

I (y` mod qI) ∈ Rq (see the definition of θI in Section 1.2.6).

• Invoke the oracle O on input (a1, . . . , am). If O succeeds, it returns z = (z1, . . . , zm)T ∈ Rm
such that

∑m
`=1 a` · z` = 0 mod q and 0 < ‖z‖ ≤ β.

• Output h = 1
q

∑m
`=1 z` · y`.

This algorithm runs in polynomial time. Also, thanks to the parameter constraints, the interval
to which the standard deviation s must belong is nonempty. Moreover, the standard deviation s is
sufficiently large for the assumptions of Theorem 1.24 to hold. Indeed, by Lemma 1.8 and given I
and S, it is possible to compute (in polynomial time) a basis T of I such that ‖T̃‖ ≤ ‖S̃‖ ≤ ‖S‖.
We use this basis and we have that s ≥ ‖T̃‖ ·

√
logn.

The following lemmata are particular cases of Lemmata 5.11, 5.12 and 5.13 (we then refer to
those lemmata for the proofs).

Lemma 5.7. The statistical distance between the distribution of (a1, . . . , am) and the uniform
distribution over Rq is at most 2mε.

As a consequence, the oracle O succeeds with probability n−O(1). In the following, we assume
we are in that situation.

Lemma 5.8. For any hyperplane H, the probability that the output vector h does not belong to
H is ≥ 1/100.

Lemma 5.9. We have h ∈ I and, with probability close to 1, we have that ‖h‖ ≤ ‖S‖/2.

It completes the proof of Theorem 5.4.

5.1.3 Hardness of Module-SIS
In this section, we provide our worst-case to average-case reduction from Mod-GIVP to M-SIS.
We will now prove the following result.

Theorem 5.10. For any d ≥ 1 and ε(N) = N−ω(1), there is a probabilistic polynomial time
reduction from solving Mod-GIVPηεγ in polynomial time (in the worst case, with high probability)
to solving M-SISq,m,β in polynomial time with non-negligible probability, for any m(N), q(N), β(N)
and γ(N) such that γ ≥ β

√
N · ω(

√
logN), q ≥ β

√
N · ω(logN) and m, log q ≤ poly(N).

In the case of a sub-exponential oracle (and with ε(N) = 2−Ω(N)), the result still holds and
the conditions on the parameters become γ ≥ β · Ω(N) and q ≥ β · Ω(N3/2).

Taking n = N and d = 1 in Theorem 5.10 allows us to recover Theorem 5.4. Also, by
taking n = 1 and d = N in Theorem 5.10, we obtain a hardness result for SIS that is as good as
that of Theorem 2.3.
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5.1. Hardness of Module-SIS

A reduction from Mod-GIVP to M-SIS. In order to prove that the new problem M-SIS is
at least as hard as GIVP restricted to module lattices, we also use the intermediate problem
IncGIVP, see Definition 5.5, introduced in [MR04].

As the reduction of Theorem 5.6 preserves the lattice, it induces a reduction from Mod-GIVPηεγ
to Mod-IncGIVPηεγ , i.e., IncGIVPηεγ restricted to module lattices. To prove Theorem 5.10, we
provide a reduction from Mod-IncGIVPηεγ to M-SISq,m,β .

Suppose that an oracle O solves M-SISq,m,β in polynomial time with probability N−O(1). The
algorithm for Mod-IncGIVP proceeds as follows on input (B,S,H). We write M = L(B). Let s
be such that

max
(

2q
γ
,
√

logN
)
‖S‖ ≤ s ≤ q‖S‖

2β
√
N · ω(

√
logN)

• For all ` ≤ m,

– Get a fresh y` distributed as DL(B),s,0 (using Theorem 1.24),
– Let a` = Θ−1(y` mod qM) (see the definition of Θ in Section 1.2.6).

• Invoke the oracle O on input (a1, . . . ,am). If O succeeds, it returns z = (z1, . . . , zm)T ∈ Rm
such that

∑m
`=1 a` · z` = 0 mod q and 0 < ‖z‖ ≤ β.

• Output h = 1
q

∑m
`=1 z` · y`.

This algorithm runs in polynomial time. Also, thanks to the parameter constraints, the
interval to which the standard deviation s must belong is nonempty. Moreover, the standard
deviation s is sufficiently large for the assumptions of Theorem 1.24 to hold. Indeed, by Lemma 1.8
and given M and S, it is possible to compute (in polynomial time) a basis T of M such that
‖T̃‖ ≤ ‖S̃‖ ≤ ‖S‖. We use this basis and we have that s ≥ ‖T̃‖ ·

√
logN .

Lemma 5.11. The statistical distance between the distribution of (a1, . . . ,am) and the uniform
distribution over Rdq is at most 2mε.

Proof. We have s ≥ 2q
γ · ‖S‖ and ‖S‖ ≥ γ · ηε(M). This implies that s ≥ q · ηε(M) = ηε(qM). By

Lemma 1.33 applied to the lattices M and qM , the statistical distance between the distribution
of (y` mod qM) and the uniform distribution on M/qM is at most 2ε. As Θ−1 is an isomorphism
from M/qM to (R/qR)d, the statistical distance between the distribution of the a` = Θ−1(y`)
and the uniform distribution on (R/qR)d is also at most 2ε. The result follows.

As a consequence, the oracle O succeeds with probability N−O(1). In the following, we assume
we are in that situation.

Lemma 5.12. For any hyperplane H, the probability that the output vector h does not belong to
H is ≥ 1/100.

Proof. As O succeeded, the vector z is nonzero. By definition of h, for every y′1 we have:

h ∈ H ⇔
m∑
`=1

z` · y` ∈ H ⇔ z1 · y1 ∈ −
m∑
i=2

z` · y` +H

⇔ (y1 − y′1) ∈ −y′1 + 1
z1

(H−
m∑
i=2

z` · y`) = H′.
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5. Hardness of Module-SIS and Module-LWE

Assume that we fix y′1 = y1 mod qM , then y1 = y′1 + y′′1 , with y′1 fixed and the vector y′′1
statistically independent of all the a`’s, z`’s and y`’s for ` > 1. The conditional distribution of
y′′1 = (y1 − y′1) is DqM,s,−y′1 . Therefore:

Pr [(y1 − y′1) /∈ H′|y′1, (a1, . . . ,am), (z1, . . . , zm)] = Pr
y′′1←↩DqM,s,−y′1

[y′′1 /∈ H′].

As s ≥ 2q · ηε(M) = 2ηε(qM), Lemma 1.34 gives that this probability is ≥ 1/100.
The following completes the proof of Theorem 5.10.

Lemma 5.13. We have h ∈M and, with probability close to 1, we have that ‖h‖ ≤ ‖S‖/2.

Proof. Let us first show that h ∈M . We have, modulo qM :
m∑
`=1

z` · y` =
m∑
`=1

z` ·Θ(a`) = Θ(
m∑
`=1

z`a`) = 0.

This implies that h = (
∑m
`=1 z` · y`)/q belongs to M .

We now show that ‖h‖ ≤ ‖S‖/2. We have ‖h‖ = ‖
∑m
`=1 z` · y`‖/q. As in the previous proof,

we define y′` = y` mod qM . Then, we have y` = y′′` + y′` with y′′` statistically independent from
the z`’s and distributed as DqM,s,−y′

`
. By Lemma 1.39, for s ≥ ηε(qM) and t = ω(

√
logN), we

know that:

Pr
∀`:y′′

`
←↩DqM,s,−y′

`

[∥∥∥∥∥
m∑
`=1

z` · (y′′` + y′`)
∥∥∥∥∥ ≥ st√N · ‖z‖

]
≤ N−ω(1).

So, with probability close to 1, we have ‖
∑m
`=1 z` · y`‖ ≤ st

√
N · ‖z‖. As 0 < ‖z‖ ≤ β, we

obtain:

‖h‖ = 1
q

∥∥∥∥∥
m∑
`=1

z` · y`

∥∥∥∥∥ ≤ stβ
√
N

q
.

Finally, since s ≤ q·‖S‖
2βt
√
N
, we obtain ‖h‖ ≤ ‖S‖2 .

5.2 Hardness of Module-LWE

5.2.1 Variants of LWE
We first define the two variants of the Learning with Errors problem over rings and over modules.

LWE over rings. The R-LWE problem was introduced by Lyubashevsky et al. in [LPR10]. Let
ψ be a distribution on TR∨ = KR/R

∨ and s ∈ R∨q . We let A(R)
s,ψ denote the distribution on

Rq × TR∨ obtained by choosing a ∈ Rq uniformly at random and e ∈ TR∨ according to ψ, and
returning (a, (a · s)/q + e).

Definition 5.14. Let q ≥ 2 and Ψ be a family of distributions on TR∨ . The search version of
the Ring Learning With Error problem R-SLWEq,Ψ is as follows: Let s ∈ R∨q be secret and ψ ∈ Ψ;
Given arbitrarily many samples from A

(R)
s,ψ , the goal is to find s.

Let Υ be a distribution over a family of noise distributions over KR. The decision version of
the Ring Learning With Error problem R-LWEq,Υ is as follows: Let s ∈ R∨q be uniformly random
and ψ be sampled from Υ; The goal is to distinguish between arbitrarily many independent
samples from A

(R)
s,ψ and the same number of independent samples from U(Rq,TR∨).
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Figure 5.2: Structured A matrix for Module-LWE.

As for R-SIS, this problem can be interpreted in terms of linear algebra. In the same
example setting as in the case of R-SIS (i.e., the parameter ν is set to a power of 2, implying
that R ' Z[x]/(xn + 1)), R-SIS is a variant of LWE where the matrix A is restricted to being
block-negacirculant: A = [Rot(a1)| . . . |Rot(am)]T . The two main results from [LPR10] are a
reduction from Id-GIVP to R-SLWE and a reduction from the search version R-SLWE to the
decision version R-LWE.

Theorem 5.15 ([LPR10, Th. 4.1 and Th. 5.1]). Let ε(n) = n−ω(1), α ∈ (0, 1) and q ≥ 2 of
known factorization such that αq > ω(

√
logn). There exists a quantum reduction from solving

Id-GIVPηεγ in polynomial time (in the worst case, with high probability) to solving R-SLWEq,Ψ≤α
in polynomial time with non-negligible probability with γ =

√
n · ω(

√
logn)/α.

Assume that q is prime, q ≤ poly(n), and that q = 1 mod ν. Then there exists a polynomial
time reduction from R-SLWEq,Ψ≤α to R-LWEq,Υα .

LWE over modules. The M-LWE problem generalizes both LWE and R-LWE, and was recently
introduced in [BGV11]. As in Chapter 5, the variable n and d respectively denote the dimension
of R and the rank of the module M ⊆ Rd; We still let N = nd denote the dimension of the
corresponding module lattice.

Let ψ be some probability distribution on TR∨ and s ∈ (R∨q )d be a vector. We define A(M)
q,s,ψ

as the distribution on (Rq)d×TR∨ obtained by choosing a vector a ∈ (Rq)d uniformly at random,
and e ∈ TR∨ according to ψ, and returning (a, 1

q 〈a, s〉+ e).

Definition 5.16. Let q ≥ 2 and Ψ be a family of distributions on TR∨ . The search version of
the Module Learning With Error problem M-SLWEq,Ψ is as follows: Let s ∈ (R∨q )d be secret and
ψ ∈ Ψ; Given arbitrarily many samples from A

(M)
q,s,ψ, the goal is to find s.

For an integer q ≥ 2 and a distribution Υ over a family of distributions over KR. The decision
version of the Module Learning With Error problem M-LWEq,Υ is as follows: Let s ∈ (R∨q )d be
uniformly random and ψ be sampled from Υ; The goal is to distinguish between arbitrarily many
independent samples from A

(M)
q,s,ψ and the same number of independent samples from U(Rdq ,TR∨).

As for LWE and R-LWE, the problem M-LWE can be interpreted in terms of linear algebra.
Still in the same example setting, it consists in taking the LWE matrix A of the form:

We now give our two main results concerning the hardness of M-LWE, in the following two
theorems.
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5. Hardness of Module-SIS and Module-LWE

Theorem 5.17. Let ε(N) = N−ω(1), α ∈ (0, 1) and q ≥ 2 of known factorization such that
αq > 2

√
d · ω(

√
logn). There is a quantum reduction from solving Mod-GIVPηεγ in polynomial

time (in the worst case, with high probability) to solving M-SLWEq,Ψ≤α in polynomial time with
non-negligible advantage with γ =

√
8Nd · ω(

√
logn)/α.

Assume that q is prime, q ≤ poly(N) and that q = 1 mod ν. Then there exists a polynomial
time reduction from M-SLWEq,Ψ≤α to M-LWEq,Υα .

In the case of a sub-exponential oracle (and with ε(N) = 2−Ω(N)), the result still holds and
the conditions on the parameters become αq > 2

√
d · Ω(

√
n) and γ = d · Ω(n)/α.

When n = N and d = 1, our theorem is identical to Theorem 5.15 [LPR10, Th. 3.1].
When n = 1 and d = N , it is identical to Theorem 2.6 [Reg09, Th. 4.1 and 5.1] (apart from a
minor detail with the error distribution which can easily be handled: we use Υα rather than Dα).

In [LPR10], this result is completed by [LPR10, Th. 5.2], that states that R-LWE with
spherical noise is also hard if the number of samples is limited. We adapt it to the module setting.

Theorem 5.18. Let ε(N) = N−ω(1), α ∈ (0, 1) and q ≥ 2 prime, with q ≤ poly(N) and q =
1 mod ν such that αq > 2

√
d·ω(
√

logn). There is a quantum reduction from solving M-SLWEq,Ψ≤α
in polynomial time (in the worst case, with high probability) to solving M-DLWEq,Dξ , given only
` samples, in polynomial time with non-negligible advantage with ξ = α(n`/ log(n`))1/4.

The proof relies on [LPR10, Le. 5.16], which carries over directly from the ring setting to the
module setting.

Our second main result is the following:

Theorem 5.19. Let p, q ∈ [2, 2NO(1) ] and α, β ∈ (0, 1) such that β ≥ α ·max(1, qp ) · n1/4N1/2 ·
ω(log2N) and αq ≥ ω(

√
log(N)/n). There exists a polynomial time reduction from M-LWEq,Υα

to M-LWEp,Υβ .

In the case of a sub-exponential oracle (and with ε(N) = 2−Ω(N)), the result still holds and
the conditions on the parameters become β ≥ α ·max(1, qp ) · Ω(n1/4N5/2) and αq ≥ Ω(

√
d).

Note that the condition on αq from Theorem 5.19 is always weaker than the one from
Theorem 5.17. Combined with Theorem 5.17 by using a q prime close to p with q = 1 mod ν,
Theorem 5.19 provides a reduction from Mod-SIVP to M-LWE with a modulus p of arbitrary
arithmetic form. As M-LWE is a generalization of both LWE and R-LWE, this theorem also
provides a reduction from Id-SIVPγ to RLWEp,Υβ , for a modulus p of arbitrary arithmetic shape.
Note the in the case of LWE, this theorem is almost identical to Corollary 4.5.

The remainder of this chapter is devoted to proving Theorems 5.17 (Section 5.2.3 and 5.2.4)
and 5.19 (Section 5.2.5).

5.2.2 Hardness of Ring-LWE
The Lyubashevsky et al reduction from Id-GIVP to R-SLWE relies on the same sequence of
reductions as Regev’s proof of hardness of SLWE (recalled in Section 2.2.2), but with problems
restricted to ideal lattices. The only step in Regev’s reduction that fails to carry over to the
ideal/ring setting is Lemma 2.8. Lyubashevsky et al circumvent it by proving the following. In
this Lemma, the problem q-Id-BDD is the restriction of q-BDD to ideal lattice lattices and instead
of using the Euclidean norm for bounding the distance to the lattice, they use the infinity norm.

Lemma 5.20 ([LPR10, Le. 4.4]). Let ε = n−ω(1), α ∈ (0, 1) and q ≥ 2 of known factorization.
Let I ⊆ R be an ideal and r ≥

√
2q · ηε(I). Given access to an oracle sampling from the

distribution DI,r, there exists a probabilistic reduction from solving q-Id-BDDI∨, αq√
2r

in polynomial

66



5.2. Hardness of Module-LWE

time with non-negligible probability to solving R-SLWEq,Ψ≤α in polynomial time with non-negligible
probability.

The reduction from R-SLWE to R-LWE from [LPR10, Th. 5.2] proceeds by several reductions
between intermediates problems, which we will also consider in our reduction for the module
variant of LWE. Let q = 1 mod 2n be prime, then (q) =

∏n
i=1 qi where any qi is a prime ideal

with norm N(qi) = q. Lyubashevsky et al define:

• qi-RLWEq,Ψ, with parameters Ψ a family of distributions over TR∨ and i ≤ n: Given access
to an oracle sampling from A

(R)
s,ψ for an arbitrary s ∈ R∨q and ψ ∈ Ψ, find s mod qiR

∨
q .

• Hybrid distribution A
(R,i)
s,ψ , with parameters ψ a distribution over TR∨ , s ∈ R∨q , and i ≤ n:

The distribution A(R,i)
s,ψ over Rq ×TR∨ is defined as follows: Choose (a, b) from A

(R)
s,ψ and return

(a, b+ r/q) where r is uniformly random and independent in R∨q /qjR∨ for all j ≤ i, and is 0
modulo the remaining qjR

∨’s.

• DecRLWEiq,Ψ, with parameters Ψ a family of distributions on TR∨ and i ≤ n: Given access
to an oracle sampling from A

(R,j)
s,ψ for an arbitrary s ∈ R∨q , ψ ∈ Ψ and j ∈ {i−, i}, find j.

The sequence of reductions is as follows:

R-SLWEq,Ψ
[LPR10, Le. 5.5]

qi-RLWEq,Ψ
[LPR10, Le. 5.8]DecRLWEiq,Ψ

[LPR10, Le. 5.11 & 5.13] R-LWEq,Υ

The oracle for M-LWE might only let us deduce the value of secret s relative to one ideal
factor of (q). The first reduction allows us, if we know s mod qiR

∨
q for a prime ideal qi factor of

(q), to know it for all ideals factors of (q) and then we can recover s.
The second reduction allows us to pass from a decisional version to a computational one, indeed

it shows that if we can distinguish between two hybrids distributions (the hybrids distributions
are between A(R)

s,ψ and the uniform distribution according to i), then we can find each coordinate
modulo qiR

∨
q .

The third reduction works on the noise problem, we go from a problem on a distribution over
noise distributions Υα to a problem under the family of distributions Ψ≤α. The principle is to
show that, if we know how to distinguish for a function φ distributed according to Υα, then we
know how to distinguish for any function ψ ∈ Ψ≤α.

Finally, the last reduction only use the hybrid argument: if we know how to distinguish the
distribution ARs,ψ and the uniform one, then there exists an i such that we know how to distinguish
between two successive hybrid distributions.

In our adaptation to modules, we will keep the general structure of this reduction. The two
first intermediates reductions will be modified, while the reduction from DecRLWE to R-LWE
will be kept as it also works in the case of modules.

5.2.3 Hardness of search Module-LWE
We show the hardness of the search version of M-LWE by providing a reduction from Mod-GIVP
to M-SLWE. This reduction follows the same design principle as Regev’s reduction from GIVP
to SLWE. It makes use of the following intermediate problems, where φ denotes an arbitrary
real-valued function on lattices and where γ is a function of the dimension, called Module Discrete
Gaussian Sampling problem (M-DGSφγ): Given an N -dimensional module lattice M and a number
r > γ · φ(M), the goal is to output a sample from DM,r. The reduction proceeds in two steps:
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5. Hardness of Module-SIS and Module-LWE

Mod-GIVPηε√
8Nd·ω(

√
logn)/α

Lemma 5.21 M-DGSηε√
2d·ω(
√

logn)/α
Lemma 5.22 M-SLWEq,Ψ≤α

The first reduction comes directly from the reduction from GIVP to DGS given by [Reg09,
Le. 3.17]: It is lattice-preserving and thus also works when we consider the problems restricted to
any family of lattices.

Lemma 5.21 (Adapted from [Reg09, Le. 3.17]). For any ε = ε(N) ≤ 1/10 and any γ and φ
such that γ · φ(M) ≤

√
2ηε(M), there is a polynomial time reduction from Mod-GIVPφ2√N ·γ to

M-DGSφγ .

In contrast, the second one needs to be adapted.

Lemma 5.22. Let ε(N) = N−ω(1), α ∈ (0, 1) and q be some integer such that αq ≥ 2
√
d ·

ω(
√

logn). Assume that we have access to an oracle that solves M-SLWEq,ψ≤α given a poly-
nomial number of samples. Then there exists a polynomial time quantum algorithm for M-
DGSηε√

2d·ω(
√

logn)/α
.

Proof. We use the same principle as Regev’s reduction [Reg09, Th. 3.1]. We consider a module
lattice M and a number r ≥

√
2d · ω(

√
logn) · ηε(M)/α. The idea is to produce samples

for DM,r′ with r′ large enough, and then to use Lemma 5.23 several times to progressively
decrease the value of r′. Take ri = r · (αq/

√
d · ω(

√
logn))i. The first iteration starts with

r3N > 23N > 22NλN (M) (using a LLL-reduction algorithm beforehand). Then it obtains poly(N)
samples of DM,r3N using the algorithm of Theorem 1.24, and finishes with poly(N) samples of
DM,r3N−1 (the reduction repeats poly(N) times the same iteration with the same samples in
input to obtain sufficiently many different samples in output). It iterates until having poly(N)
samples of DM,r1 with r1 = r · αq/(

√
d · ω(

√
logn)) >

√
2q · ηε(M) then it iterates a last time to

obtain samples of DM,r0 with r0 = r >
√
d · ω(

√
logn) · ηε(M)/α. These samples are solutions to

M-DGS√2d·ω(
√

logn)·ηε(M)/α.
We now describe the iterative step:

Lemma 5.23. Let ε(N) = N−ω(1), α ∈ (0, 1) and q ≥ 2. Assume that we have access to an oracle
that solves M-SLWEq,Ψ≤α in polynomial time with non-negligible probability. Then there exists a
polynomial time quantum algorithm that, given an N -dimensional module lattice M , a number
r >
√

2q · ηε(M) and poly(N) samples from DM,r, produces a sample from D
M,

r
√
d·ω(
√

logn)
αq

with

non-negligible probability.

To prove Lemma 5.23, we use the intermediate problem Mod-BDDδ: Given a module lattice
M , δ < λ1(M)/2 and any point y ∈ Rn of the form y = x + e for some x ∈M and ‖e‖2,∞ ≤ δ,
find x. Note that we use the `2,∞ rather than the euclidean norm, as it is more convenient in
Lemma 5.26.

As in [Reg09], we use another intermediate problem called q-Mod-BDDδ: Given a module
lattice M and a point y ∈ Rn within distance (with respect to `2,∞ norm) δ of M , output the
coset in M/qM of the closest vector to y. The proof of Lemma 5.23 consists of a sequence of
reductions (note that δ is set to αq·ω(

√
logn)√

2nr ).

Samples from
D
M,

r
√
d·ω(
√

logn)
αq

Lemma 5.24
(quantum)

Mod-BDDM∨,δLemma 5.25q-Mod-BDDM∨,δLemma 5.26
M-SLWEq,Dα

+
Samples from DM,r
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The first reduction of Regev’s proof is quantum and also lattice-preserving. It is adapted to
the `2,∞ norm rather than the euclidean norm (note that λ1(M∨) is still with respect to the
euclidean norm). For the adaptation, we used the fact that an N -dimensional vector sampled
from Ds has `2,∞ norm at most s

√
dω(
√

logn), except with negligible probability.

Lemma 5.24 (Adapted from [Reg09, Le. 3.14]). There exists an efficient quantum algorithm
that, given any N-dimensional module lattice M , a number δ < λ1(M∨)ω(

√
logn)/(2

√
n), and

an oracle that solves Mod-BDDδ on M∨, outputs samples from D
M,
√
dω(
√

logn)/(
√

2δ).

Note that by Lemma 1.29, as r >
√

2q · ηε(M), we have that:

δ = αq · ω(
√

logn)√
2nr

<
ω(
√

logn)√
n · ηε(M) <

λ1(M∨)ω(
√

logn)
2
√
n

.

The second reduction is a special case of [Reg09, Le. 3.5], which is lattice-preserving (and
hence also applies to module lattices).

Lemma 5.25 ([Reg09, Le. 3.5]). For any q ≥ 2, there is a polynomial time reduction from
Mod-BDDδ to q-Mod-BDDδ.

We will modify the last reduction, by proving the following adaptation of [Reg09, Le. 3.4].
The following lemma is the main modification of the proof of the first part of Theorem 5.17.

Lemma 5.26. Let ε(N) = N−ω(1), α ∈ (0, 1) and q ≥ 2. Let M ⊆ Rd be an R-module,
and r >

√
2q · ηε(M). Given access to an oracle sampling from the distribution DM,r, there exists

a probabilistic reduction from q-Mod-BDD
M∨,

αq·ω(
√

logn)
√

2nr

to M-SLWEq,Ψ≤α .

The principle of the reduction is to construct from y, the input of q-Mod-BDD, and from
some discrete and continuous Gaussian samples, the pairs (a, b) distributed as A(M)

q,s,ψ, where s
will directly depend on the closest vector x to y. To produce such samples (a, b) with the desired
distribution, we combine the corresponding proofs for LWE and R-LWE (those of Lemmata [Reg09,
Le. 3.4] and [LPR10, Le. 4.5]). Then a call to the oracle of M-SLWE returns s and lets us recover
information on x.

Proof of Lemma 5.26. Let O be the oracle which, given m ≤ poly(N) samples (a, b) from A
(M)
q,s,ψ

for ψ ∈ Ψ≤α, outputs s in polynomial time with probability N−O(1). Given M =
∑d
k=1 Ik · bk,

the input of the reduction is y = x + e such that x ∈ M∨ and ‖e‖2,∞ ≤ δ = αq·ω(
√

logn)√
2nr . The

goal is to find x mod qM∨. The reduction is as follows:

• For all ` ≤ m:

– Get a fresh z` distributed as DM,r and a fresh e′` distributed as Dα/
√

2,

– Let a` = Θ−1(z` mod qM) and b` = 1
q 〈z`,y〉 + e′` mod R∨ (see the definition of Θ in

Section 1.2.5).

• Invoke the oracle O on input {(a`, b`)}m`=1. If O succeeds, it returns some s ∈ (R∨q )d.

• Output Θ−1(s) ∈M∨/qM∨.

We show that the oracle O is used properly, i.e., that its input follows the distribution A(M)
q,s,ψ.
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5. Hardness of Module-SIS and Module-LWE

Lemma 5.27. Let ε > 0 and s = Θ(x mod qM∨). There exists ψ ∈ Ψ≤α such that the statistical
distance between A(M)

q,s,ψ and the distribution of (a, b) is at most 6ε.

Proof. We first show that the statistical distance between a, the first component of each sample,
and the uniform distribution on Rdq is at most 2ε. By Lemma 1.33, the statistical distance between
the distribution of z and the uniform distribution on Mq is at most 2ε, because r ≥ q · ηε(M) =
ηε(qM). Then, as Θ−1 induces a bijection from Mq to Rdq , the statistical distance between the
distribution of a = Θ−1(z mod qM) and the uniform distribution on (Rq)d is at most 2ε.

Now, we show that b is of the shape b = 1
q 〈a, s〉+ f , where f distributed from Dr′ with r′i ≤ α

for all i. We have:

b = 1
q
〈z,y〉+ e′ = 1

q
〈z,x + e〉+ e′ = 1

q
〈z,x〉+ 〈1

q
z, e〉+ e′.

By definition, we have z = Θ(a) =
∑d
k=1(tk · ak) · bk mod qM with tk ∈ Ik and ak ∈ Rq. By

Lemma 1.7, we haveM∨ =
∑d
k=1 I

∨
k ·b∨k . Let x =

∑d
k=1 xk ·b

∨
k . We have that xk ∈ I∨k = I−1

k ·R∨
for all k. We also have 〈bk,b∨k′〉 = 1 if k = k′ and 〈bk,b∨k′〉 = 0 otherwise. Then, modulo qR∨:

〈z,x〉 =
d∑

k,k′=1
(tk · ak) · xk′ · 〈bk,b∨k′〉 =

d∑
k=1

(tk · ak) · xk =
d∑
k=1

ak · (tk · xk).

Because s = Θ(x mod qM∨) = (t1 · x1 mod qR∨, . . . , td · xd mod qR∨)T , we have:

〈a, s〉 =
d∑
k=1

ak · (tk · xk) = 〈z,x〉 mod qR∨.

As a consequence, we obtain that 1
q 〈z,x〉 = 1

q 〈a, s〉 mod R∨.

We now show that, conditioned on a, the quantity 〈 1qz, e〉 + e′ has distribution Dr′ with
r′i ≤ α for all i. First, let us analyse the distribution of z′ = 1

qz knowing a. We know that z
has distribution DM,r and that a = Θ−1(z mod qM). Let u = Θ(a) mod qM , then the residual
distribution of z′ = 1

qz knowing a is DM+u/q,r/q (with r/q ≥
√

2ηε(M)).
We next show that e′ is following the same distribution as 〈e′′, e〉 with e′′ ←↩ Ds,...,s, s = (si)i

and si = sν−i = α/
√

2
∑d
k=1 |σi(ek)|2 for i ∈ J. By Lemma 1.45, as the vector e′′ is distributed

from Ds,...,s and e ∈ Kd is fixed, we have that 〈e′′, e〉 has distribution Ds′ with s′i = s′ν−i =

si

√∑d
k=1 |σi(ek)|2 = α/

√
2, which is exactly the distribution of e′ as claimed.

We are now led to considering the distribution of 〈z′ + e′′, e〉. We write e′′ = e′′1 + e′′2 with
e′′1 ←↩ Dα/(

√
2δ) and e′′2 ←↩ Ds′′ with (s′′i )2 = s2

i − α2/(2δ2) (which is positive, by the assumption
on ‖e‖2,∞). As we have α/(

√
2δ) = r/q and r/q ≥

√
2ηε(M), Lemma 1.42 gives us that the

statistical distance between the distribution of z′ + e′′1 and Dα/δ is at most 4ε. As a consequence,
the statistical distance between the distribution of z′ + e′′1 + e′′2 and Dr′′,...,r′′ is at most 4ε, with

(r′′i )2 = α2

δ2 + (s′′i )2 = α2

δ2 + s2
i −

α2

2δ2 = α2

2
∑d
k=1 |σi(ek)|2

+ α2

2δ2 .

By using Lemma 1.45 again with the fixed vector e, we obtain that the statistical distance
between the distribution of 〈z + e′′, e〉 and Dr′ is at most 4ε, where

r′i =

√
α2

2 + α2∑d
k=1 |σi(ek)|2

2δ2 .
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5.2. Hardness of Module-LWE

Since δ ≥
√∑d

k=1 |σi(ek)|2, we have r′i ≤ α, as desired.
As the input of O is within negligible statistical distance from A

(M)
q,s,ψ for a distribution ψ ∈ Ψ≤α

and s = Θ(x mod qM∨), oracle O succeeds with non-negligible probability. If it does succeed,
then the output of our reduction is x mod qM∨, which completes the proof of Lemma 5.26.

This conclude the proof of the first part of Theorem 5.17.

5.2.4 Hardness of decisional Module-LWE
We now describe a reduction from the search version M-SLWE to the decision version M-LWE. The
reduction of Regev from SLWE to LWE in [Reg09] does not carry over to the structured variants
of LWE. We instead use the line of proof of Lyubashevsky et al. in [LPR10]. Let q = 1 mod ν
be prime. Then (q) =

∏
i∈Z×ν qi where any qi is a prime ideal with norm N (qi) = q. For i ∈ Z×ν ,

we let i− denote the largest element in Z×ν less than i (and we define 1− as 0). We define the
following intermediate problems:

• qi-MLWEq,Ψ, with parameters Ψ a family of distributions over TR∨ and i ∈ Z×ν : Given access
to an oracle sampling from A

(M)
q,s,ψ for some arbitrary s ∈ (R∨q )d and ψ ∈ Ψ, find s mod qiR

∨
q .

• Hybrid distribution A
(M,i)
q,s,ψ , with parameters ψ a distribution over TR∨ , s ∈ (R∨q )d and

i ∈ Z×ν : The distribution A(M,i)
q,s,ψ over (Rq)d × TR∨ is defined as follows: Choose (a, b) from

A
(M)
q,s,ψ and return (a, b+ r/q) where r ∈ R∨q is uniformly random and independent in R∨q /qjR∨

for all j ≤ i, and is 0 modulo the remaining qjR
∨’s.

• DecMLWEiq,Ψ, with parameters Ψ a family of distributions on TR∨ and i ∈ Z×ν : Given access
to an oracle sampling from A

(M,j)
q,s,ψ for arbitrary s ∈ (R∨q )d, ψ ∈ Ψ and j ∈ {i−, i}, find j.

• M-DLWEiq,Υ, with parameters a distribution Υ over errors distributions and i ∈ Z×ν : Given
access to an oracle sampling from A

(M,j)
q,s,ψ for s uniform in (R∨q )d, ψ sampled from Υ and

arbitrary j ∈ {i−, i}, find j.

We consider the following sequence of reductions:

M-SLWEq,Ψ 5.28 qi-MLWEq,Ψ 5.30 DecMLWEiq,Ψ
5.31 M-DLWEiq,Υ

5.33 M-LWEq,Υ

We explain the first two reductions. The following result is adapted from [LPR10].

Lemma 5.28. For any i ∈ Z×ν , there is a polynomial time reduction from M-SLWEq,Ψ≤α to
qi-MLWEq,Ψ≤α .

Proof. We will show below that given the qi-MLWE oracle (where i is fixed), we can find the
values of s mod qjR

∨ for every j ∈ Z×ν . This would complete the proof since by the Chinese
Remainder Theorem, this allows us to construct s mod R∨ and to solve M-SLWE.

We use the K-automorphisms, defined by τj(ξ) = ξj for all j ∈ Z×ν . We choose ji ∈ Z×ν such
that τji(qj) = qi. The reduction is as follows:

• For every sample (a, b), create the sample (a′, b′) with a′ = (τji(a1), . . . , τji(ad))T and b′ =
τji(b).

• Use the oracle of qi-MLWE with these samples, and get t ∈ (R∨/qiR∨)d.
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5. Hardness of Module-SIS and Module-LWE

• Return (τ−1
ji

(t1), . . . , τ−1
ji

(td)) ∈ (R∨/qjR∨)d.

We show that τ−1
ji

(tk) = sk mod qjR
∨ for all k ∈ {1, . . . , d}. By definition, we have b =

1
q 〈a, s〉+ e mod R∨ with 〈a, s〉 =

∑d
k=1 ak · sk. As a consequence, we have:

b′ = τji(b) = 1
q

d∑
k=1

τji(ak) · τji(sk) + τji(e) = 1
q
〈a′, s′〉+ τji(e) mod R∨,

with s′ = (τji(s1), . . . , τji(sd))T . As τji is an automorphism, the vector a′ is uniformly distributed
in Rdq . Also, as Ψ≤α is closed under the automorphisms of K (see Lemma 5.29), we have ψ′ :=
τji(ψ) ∈ Ψ≤α. Overall, the pairs (a′, b′) are distributed as A(M)

q,s′,ψ′ . If successful, the qi-MLWE
oracle outputs t = s′ mod qiR

∨ = (τji(s1) mod qiR
∨, . . . , τji(sd) mod qiR

∨). Then our reduction
returns (τ−1

ji
(t1), . . . , τ−1

ji
(td))T ∈ (R∨/qjR∨)d, which is equal to s mod qjR

∨.
By [LPR10, Le. 5.6], we know that Ψ≤α satisfies the property required by Lemma 5.28.

Lemma 5.29 ([LPR10, Le. 5.6]). For any α > 0, the family Ψ≤α is closed under every auto-
morphism τ of K, i.e., ψ ∈ Ψ≤α ⇒ τ(ψ) ∈ Ψ≤α.

We now describe the next reduction.

Lemma 5.30. Assume that q ≤ poly(n), then for any i ∈ Z×ν , there is a polynomial time
reduction from qi-MLWEq,Ψ to DecMLWEiq,Ψ.

Proof. We want to find s mod qiR
∨ from samples from A

(M)
q,s,ψ, by using an oracle that solves

the DecMLWEiq,Ψ problem. The principle of the proof is to find, one by one, each one of the
d coordinates of s mod qiR

∨ by using the oracle of DecMLWEiq,Ψ. For each coordinate, there are
N (qi) = q ≤ poly(n) possibilities. Therefore, it is possible to try them all in order to find the
correct one. To check that a guess is correct, we use the same approach as in [Reg09, Le. 4.2]
and randomize a coordinate of a.

To find s1 mod qiR
∨, we proceed as follows. Let (a, b) be distributed as A(M)

q,s,ψ and let x ∈ R∨q ;
we want to know if x = s1 mod qiR

∨. We construct the following pair:

(a′, b′) :=
(

a + (y, 0, . . . , 0), b+ 1
q

(r + xy)
)
,

where y ∈ Rq is sampled uniformly modulo qi, and is 0 modulo all the remaining qj ’s, and
where r ∈ R∨q is uniformly random and independent modulo qjR

∨ for all j < i, and 0 modulo all
the remaining qjR

∨’s.
Now, we show that if x = s1 mod qiR

∨, then the pair (a′, b′) is distributed from A
(M,i−)
q,s,ψ and

if x 6= s1 mod qiR
∨, it is distributed from A

(M,i)
q,s,ψ . First, notice that the vector a′ is uniformly

distributed in (Rq)d. Now, we write b′ as follows:

b′ = b+ 1
q

(r + xy) = 1
q

(
d∑
k=1

ak · sk + r + xy

)
+ e =

(
1
q
〈a′, s〉+ e

)
+ 1
q

(r + y(x− s1)) .

We have two cases:

• If x = s1 mod qiR
∨, then by the Chinese Remainder Theorem we have y(x− s1) = 0 ∈ R∨q . As

r is chosen uniformly random and independent modulo qjR
∨ for all j < i, and is 0 modulo all

the remaining qjR
∨’s, we obtain that the pair (a′, b′) has distribution A(M,i−)

q,s,ψ .

72



5.2. Hardness of Module-LWE

• If x 6= s1 mod qiR
∨, then y(x− s1) is uniformly distributed modulo qiR

∨, because R∨/qiR∨
is a field (the ideal qi is prime). Also, the quantity y(x − s1) is 0 modulo the other qjR

∨’s.
As a consequence, we have that (r + y(x− s1)) is uniformly random and independent modulo
qjR

∨ for all j ≤ i and is 0 modulo all the remaining qjR
∨’s. We obtain that the pair (a′, b′) is

distributed as A(M,i)
q,s,ψ .

We repeat this process d times (once for each coordinate of s), to obtain s mod qiR
∨.

The last reductions carry over directly from the ring setting [LPR10, Le. 5.12 and 5.14] to the
module setting (the proof randomizes the noise distribution Ψ, which is the same in the ring and
module settings).

Lemma 5.31 (Adapted from [LPR10, Le. 5.12]). For any α > 0 and every i ∈ Z×ν , there is a
polynomial time reduction from Dec-MLWEiq,Ψ≤α to M-DLWEiq,Υα .

Lemma 5.32 (Adapted from [LPR10, Le. 5.13]). Let α > (1/q)ηε(R∨)d for some ε. Then for
any ψ in the support of Υα and s ∈ (R∨)d, the distribution A(M,ν−1)

q,s,ψ is within statistical distance
ε/2 of the uniform distribution over ((Rq)d,TR∨).

Lemma 5.33 (Adapted from [LPR10, Le. 5.14]). Let Υ be a distribution over noise distributions
satisfying that for any ψ in the support of Υ and any s ∈ (R∨q )d, the distribution A

(M,ν−1)
q,s,ψ is

within negligible statistical distance from uniform. Then for any oracle solving the M-LWEq,Υ
problem, there exists an i ∈ Z×ν and an efficient algorithm that solves the M-DLWEiq,Υ using the
oracle.

This completes the proof of Theorem 5.17 and Theorem 5.18.

5.2.5 A modulus-switching self-reduction for Module-LWE
The aim of the present section is to give the proof of Theorem 5.19: For any p, q ≥ 2, and under
some conditions on α and β, M-LWEp,Υβ is no easier than M-LWEq,Υα . We proceed by a sequence
of reductions:

M-LWEq,Υα
Lemmata

5.34 and 5.36
HNF-MLWEq,D 1

q
R∨,[α,α′]

Lemma 5.38 M-LWEp,Ψ≤β Lemma 5.41 M-LWEp,Υβ

In Lemmata 5.34 and 5.36, we first reduce M-LWEq,Υα to the HNF version (i.e., with a secret s
of small euclidean norm) of M-LWEq,D(1/q)R∨,[α,α′] , where α′ ≈ αn1/4. Then, in Lemma 5.38 we
reduce HNF-MLWEq,D(1/q)R∨,[α,α′] to M-LWEp,Ψ≤β , by switching the modulus and handling the
right hand sides of the M-LWE samples so that the distribution of the error term belongs to Ψ≤β .
Finally, in Lemma 5.41, we re-randomize the noise distribution, thus providing a reduction from
M-LWEp,Ψ≤β to M-LWEp,Υβ .

Reducing M-LWEq,Υα to HNF-MLWEq,D(1/q)R∨,[α,α′] . We first reduce M-LWEq,Υα to M-
LWEq,Ψ[α,α′] . We consider a sample φ from Υα: we have φ = Dr with ri = rν−i = α

√
1 +
√
nxi

and xi sampled from Γ(2, 1), for all i ∈ J. By definition of Γ(2, 1), we have Prx←↩Γ(2,1)[x ≤ t] =
1− (1 + t)e−t, from which We derive that x ≤ ω(logN) with probability negligibly close to 1. As
a consequence, with the same probability we have that α < ri ≤ α′ = α · n1/4ω(logN) for all i.
Therefore, M-LWEq,Ψ[α,α′] is no easier than M-LWEq,Υα .

Now, for any distribution Dr arbitrarily chosen in Ψ[α,α′], we discretize the noise distribution
by proving that M-LWEq,D(1/q)R∨,

√
2r

is no easier than M-LWEq,Dr . Here, by abuse of notation,
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5. Hardness of Module-SIS and Module-LWE

M-LWEq,D(1/q)R∨,
√

2r
denotes the M-LWE problem where the distribution ψ = D(1/q)R∨,

√
2r is

a discrete distribution on (1/q)R∨ and where the goal is to distinguish between arbitrarily
many independent samples from A

(M)
q,s,ψ and the same number of independent samples from

U(Rdq × Tq,R∨), with Tq,R∨ = ((1/q)R∨)/R∨.

Lemma 5.34 (Adapted from [GKV10, Le. 2]). For any q ≥ 2, ε ∈ (0, 1), r ∈ (R+)n with rν−i = ri
for all i, and α ∈ [ηε(R∨)/q,mini ri], there is a polynomial time reduction from M-LWEq,Dr to
M-LWEq,D(1/q)R∨,

√
2r
.

The proof is following the same design as the proof of [GKV10, Le. 2].

Proof. We consider the following transformation: Given (a, b) ∈ Rdq × TR∨ , sample f ←↩
D(1/q)R∨−b,r and returns (a, b+ f mod R∨).

If the sample (a, b) is uniform over Rdq ×TR∨ , then (b+ f mod R∨) is uniform in Tq,R∨ . Now,
assume that (a, b) is distributed according to A(M)

q,s,Dr
: We have b = 1

q 〈a, s〉+ e, where e←↩ Dr.
Since 1

q 〈a, s〉 belongs to 1
qR
∨, we have D(1/q)R∨−b,r = D(1/q)R∨−e,r. By [Pei10, Th. 3.1], as e

is sampled from Dr and e′ = e+ f with f sampled from D(1/q)R∨−e,r, the distribution of e′ is
statistically close to D(1/q)R∨,

√
2r. We conclude that, in this case, the transformation returns a

sample of A(M)
q,s,D(1/q)R∨,

√
2r
.

Finally, Lemma 5.36 allows us to reduce the M-LWEq,D(1/q)R∨,
√

2r
problem to a variant in

which the secret is chosen from D(R∨)d,
√

2qr. We call this new problem the Hermite Normal Form
(HNF) of M-LWE.

Definition 5.35. Let q ≥ 2, and Υ be a set of distributions over (1/q)R∨. The Hermite Normal
Form of the decision version of the Module Learning With Error problem HNF-MLWEq,Υ is as
follows: Let ψ be arbitrarily chosen from Υ and s ∈ (R∨q )d be sampled from (q · ψ)d. The goal is
to distinguish between arbitrarily many independent samples from A

(M)
q,s,ψ and the same number

of independent samples from U(Rdq × Tq,R∨).

We have the following result:

Lemma 5.36 (Adapted from [ACPS09, Le. 2]). There is a polynomial time transformation that,
for arbitrary s ∈ (R∨q )d and error distribution D(1/q)R∨,r, maps A(M)

q,s,D(1/q)R∨,r
to A(M)

q,x,D(1/q)R∨,r

with x←↩ D(R∨)d,qr, and maps U(Rdq × Tq,R∨) to itself.

The proof is following the same principle as the proof of [ACPS09, Le. 2].

Proof. We are given samples from a distribution D that is either the uniform over Rdq ×Tq,R∨ , or
A

(M)
q,s,D(1/q)R∨,r

.
In a first stage, we take several samples (a, b) from D and construct a set of d pairs {(ak, bk)}

such that the ak’s are linearly independent over Rq and generate Rdq (recall that Rq is not a
field). A polynomial number of samples suffices to obtain such ak’s. This can be observed by
considering the CRT components of Rq ' (Fq`)n/` independently: An equivalent condition is that
the n/` matrices corresponding to each component are invertible over the corresponding finite
field. We define A = (aT1 , . . . ,aTd ) and b = (b1, . . . , bd)T . By construction, the map y 7→ Ay is
a bijection of Rdq , and if D = A

(M)
q,s,D(1/q)R∨,r

then we have b = 1
q

(
As + x

)
, where x is sampled

from D(R∨)d,qr.
In a second stage, we map the fresh samples (a, b) from D, to samples (a′, b′) with a′ =

−(A)−T · a ∈ Rdq and b′ = b + 〈a′,b〉. As the map y 7→ Ay is a bijection of Rdq and as a is
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uniform in Rdq , we have that a′ is uniform in Rdq . For the right hand side b′, we consider two
cases:

• If D is the uniform distribution on Rdq × Tq,R∨ , then (a′, b′) is also uniform on (Rq)d × Tq,R∨ .

• If D is A(M)
q,s,D(1/q)R∨,r

, then b′ = 1
q 〈a, s〉 + e − 1

q 〈(A)−Ta,As〉+ 1
q 〈a
′,x〉 = 1

q 〈a
′,x〉+ e. As a

consequence, the pair (a′, b′) is distributed as A(q)
x,D(1/q)R∨,r

, with x sampled from D(R∨)d,qr.

This completes the reduction from M-LWEq,Υα to HNF-MLWEq,D(1/q)R∨,[α,α′] .

Reducing HNF-MLWEq,D(1/q)R∨,[α,α′] to M-LWEp,Ψ≤β . This is the main component of the
proof of Theorem 5.19. In Lemma 5.37, we first give a bound on ‖s‖2,∞.

Lemma 5.37. Let ε = N−ω(1), α′ > α > 0 and q an integer such that αq ≥ ηε(R∨). Let r ∈
(R+)n with ri ∈ [α, α′] for all i. If s is sampled from D(1/q)R∨,r, then ‖s‖2,∞ ≤ α′q ·

√
d·ω(
√

logN)
with probability ≥ 1− ε.

Proof. First, we know that ‖s‖2,∞ ≤
√
d‖s‖∞. Let ε = N−ω(1), by assumption, we have

that αq ≥ ηε(R∨). By Lemma 1.38 we know that ‖s‖∞ ≤ α′q · ω(
√

logN) with probability
≥ 1− ε. The result follows.

In the following lemma, we transform a sample from A
(M)
q,s,D(1/q)R∨,[α,α′]

to a sample of A(M)
p,s,Ψ≤β ,

assuming that ‖s‖2,∞ is bounded.

Lemma 5.38 (Adapted from Lemma 4.7). Let ε = N−ω(1), p, q > 2, α, α′ ∈ (0, 1), and smax > 0.
There is an efficient mapping from Rdq × Tq,R∨ to Rdp × Tp,R∨ which has the following properties:

• If the input is uniformly random, then the output is within negligible statistical distance from
the uniform distribution.

• If the input is distributed from A
(M)
q,s,D(1/q)R∨,[α,α′]

, where s ∈ (R∨)d with ‖s‖2,∞ ≤ smax, then the

output distribution is within negligible statistical distance from A
(M)
p,s′,Ψ≤β , where s′ is uniform

in (R∨p )d and

β2 ≥ 2
(
α′ + ω(p+ q

pq
smax · ηε(Rd))

)
.

Proof. The principle of this reduction is to first map a ∈ Rdq to a′ ∈ Rdp by scaling it by p/q, and
then randomly rounding it (using a discrete Gaussian distribution). Note that simply multiplying
by p/q cannot work as, for example, the caridnality of Rdp may not divide the cardinality of Rdq .
Then, we study the new error term, modified with the Gaussian rounding, and show that it is
still a Gaussian error.

We sample s1 uniformly in (R∨p )d. On input (a, b) ∈ Rdq × Tq,R∨ , the mapping is as follows:

• Set σ = ω
(
(1 + p/q)ηε(Rd)

)
,

• Sample d from DRd− pq a,σ and compute a′ = p
qa + d,

• Sample ed from Dσ·smax and e′ from Dα′ ,

• Compute b′ = b+ 1
p 〈a
′, s1〉+ 1

ped + e′,

• Return the new sample (a′, b′).
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5. Hardness of Module-SIS and Module-LWE

The choice of σ is derived from the proof of correctness of the reduction (see Lemmata 5.39
and 5.40 below).

We first show that the second step of the mapping transforms the uniform distribution in Rdq
to the uniform distribution in Rdp, by considering the joint distribution of the pair (a′,d). The
following result can be interpreted as a simple particular case of [Pei10, Se. 3].

Lemma 5.39. Let ε = N−ω(1) and assume that σ ≥ ω((1 + p
q )ηε(Rd)). Then the residual

distribution of a′ is within negligible statistical distance to U(Rdp), and, for any a′ ∈ Rdp, the
distribution of d conditioned on a′ = a′ is within negligible statistical distance to D p

qR
d+a′,σ.

Proof. Let a′ ∈ Rdp. Since d = a′− p
qa+pk for some k ∈ Rd and a ∈ Rdq , we have that d−a′ ∈ p

qR
d.

Let d ∈ p
qR

d + a′. By construction, we have:

Pr
[
a′ = a′ ∧ d = d

]
= Pr

[
a = q

p
(a′ − d) ∧ d = d

]
= ρσ(d)
qn · ρσ(Rd − a′ + d)

.

In the latter, the denominator is within a factor 1± ε from qn · ρσ(Rd), because σ ≥ ηε(Rd).
We now consider the residual distribution of a′.

Pr
[
a′ = a′

]
=

∑
d∈ pqRd+a′

Pr
[
a′ = a′ ∧ d = d

]

∈
ρσ(pqRd + a′)
qn · ρσ(Rd) · [1− ε, 1 + ε]

⊆ 1
pn
· [1− ε, 1 + ε] ,

because σ ≥ ηε(pqRd).
Finally, we obtain that Pr[d = d|a′ = a′] is within a factor 1 ± ε from a quantity that is

proportional to ρσ(d). This completes the proof of the claim.
We now study the right hand size of the LWE sample. Assume that b ∈ Tq,R∨ is of the

form 1
q 〈a, s〉+ eq with eq ←↩ D(1/q)R∨,[α,α′]. Then we can write:

(a′, b′) =
(

a′, 1
p
〈a′, s + s′〉+ 1

p
(〈d, s〉+ ed) + eq + e′

)
. (5.1)

The new error ep is equal to 1
p (〈d, s〉+ ed) + eq + e′. To study this new error, we first study the

distribution of 〈d, s〉+ ed conditioned on a′ in Lemma 5.40 (which generalizes [Reg05, Co. 3.10]
to the module case).

Lemma 5.40. Let smax > 0 and s ∈ Kd with ‖s‖2,∞ < smax. Let d be distributed as D(p/q)Rd−a,σ
for some arbitrary a and σ ≥

√
2(p/q)ηε(Rd) and e be distributed as Dτ for some τ ≥ σ · smax.

Then the distribution of 〈d, s〉+ e is within negligible statistical distance of the elliptical Gaussian
distribution Dt over K, where t2i = t2ν−i = σ2∑d

k=1 |σi(sk)|2 + τ2 for all i.

Proof. By Lemma 1.45, we have that e is following the same distribution as 〈es, s〉 with es
distributed from Dr′,...,r′ and r′i = r′ν−i = τ/

√∑d
k=1 |σi(sk)|2 for i.

As a consequence, we have that 〈d, s〉+ e is following the same distribution as 〈d + es, s〉. We
write es = e1 + e2 with e1 distributed from Dτ/S and e2 distributed from D(

√
(r′
i
)2−(τ/smax)2)i .
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5.2. Hardness of Module-LWE

We now use Lemma 1.42: As σ ≥
√

2(p/q)ηε(Rd) and τ ≥ smax · σ, we have that d + e1 is within
statistical distance 4ε from D√

σ2+(τ/smax)2 . The quantity d + es can be interpreted as the sum
of two continuous Gaussians: It is within statistical distance 4ε from D(

√
σ2+(r′

i
)2)i .

We use Lemma 1.45 once more. We obtain that 〈d, s〉 + e is within statistical distance 4ε
from Dt with t2i = t2ν−i = σ2∑d

k=1 |σi(sk)|2 + τ2, for all i.
Let (a, b) be sampled from A

(M)
q,s,D(1/q)R∨,[α,α′]

and let (a′, b′) be the image of (a, b) by the
mapping. To conclude the proof, we show that (a′, b′) is sampled from A

(M)
p,s′,Ψ≤β :

• We recall that b′ = 1
p 〈a
′, s + s1〉+ ep.

• We showed that a′ is within negligible statistical distance from the uniform distribution in Rdp.

• We have that s′ = s + s1, where s1 is uniform in (R∨p )d and independent from s. This ensures
that s′ mod p is uniform in (R∨p )d.

• We now consider ep = 1
p (〈d, s〉+ ed) + e+ e′, where:

– The component 1
p (〈d, s〉 + ed) it is within negligible statistical distance from Dt with

t2i = t2ν−i = 1
pσ

2
(∑d

k=1 |σi(sk)|2 + s2
max

)
by applying Lemma 5.40.

– The component e+ e′ is within negligible statistical distance from Dt′ with (t′i)2 = (t′ν−i)2 =
r2
i + (α′)2 by Lemma 1.42 and as, for all i, α′q ≥ riq > αq ≥

√
2ηε(R∨).

Then, the error component ep is within negligible statistical distance from Dt′′ with (t′′i )2 =
(t′′ν−i)2 = r2

i +(α′)2+ σ2

p2 (
∑d
k=1 |σi(sk)|2+s2

max). As ri ≤ α′ holds for all i, and as ‖s‖2,∞ ≤ smax,
we have:

t′′i = t′′ν−i ≤
√

2 ·

√
(α′)2 + σ2

p2 s
2
max ≤ β, for all i.

Reducing M-LWEp,Ψ≤β to M-LWEp,Υβ . This is the last component of the proof of Theo-
rem 5.19. The goal is to re-randomize the error distribution of M-LWE. The proof is adapted
from [LPR10, Le. 5.11].

Lemma 5.41. Let p ≥ 2 and β ∈ (0, 1). There is a polynomial time reduction from M-LWEp,Ψ≤β
to M-LWEp,Υβ .

Proof. Let (a, b = 1
p 〈a, s〉+ e) be a sample from A

(M)
p,s,Dt

with 0 < ti ≤ β and tν−i = ti for all i,
and s←↩ U((R∨q )d). Let (x′i)i ∈ J be independent samples from Γ(2, 1). We perform the following
transformation:

(a′, b′) := (a, b+ e′),
where e′ is sampled from Dr, with r defined by r2

i = r2
ν−i = β2√nx′i for all i.

This transformation maps the uniform distribution over Rdp × TR∨ to itself. On the other
hand, it maps A(M)

p,s,Dt
to A(M)

p,s,Dr′
, with r′i = r′ν−i =

√
t2i + β2√nx′i, for all i ∈ J.

Let S denote the set of ψ’s for which the oracle distinguishes with non-negligible probability
between the uniform distribution over Rdp×Tp,R∨ and the distribution A(M)

p,s,ψ. By assumption, the
measure of S under Υβ is non-negligible. Lemma 1.21 implies that Dr′ ∈ S with non-negligible
probability. The result follows.
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5. Hardness of Module-SIS and Module-LWE

5.3 Converse reduction

5.3.1 From Module-SIS to Mod-GIVP
We restrict the analysis to cyclotomic polynomials of the form xn + 1 with n a power of 2, for
the sake of simplicity. We expect the result to carry over to all cyclotomic polynomials, but
this would add technical complications in the proof of Lemma 5.42. Choosing xn + 1 implies
that R∨ = 1

nR.
Let a1, . . . ,am be sampled uniformly and independently in Rdq . Finding z = (z1, . . . , zm)T ∈

Rm \ {0} such that
∑
i ziai = 0 mod q and ‖z‖ ≤ β corresponds to finding a short vector in the

lattice:
A⊥ =

{
y ∈ Rm : ATy = 0 mod q

}
,

where A ∈ Rd×mq is the matrix whose rows are the ai’s. As this lattice is a module lattice, if we
solve Mod-GIVPηεγ given as input an arbitrary basis of A⊥ (which can be computed efficiently
given A), then we obtain a solution to the M-SIS instance, for β = γ · ηε(A⊥). To assess the
effectiveness of this reduction from M-SIS to Mod-GIVP, we are thus led to estimating ηε(A⊥)
for A sampled uniformly in Rm×dq . For this task, it is classical to study the dual lattice, as we

have ηε(Λ) ≤
√

ln(2N(1+1/ε))
π /λ∞1 (Λ∗) for any N -dimensional lattice Λ (see Lemma 1.29). The

dual of the lattice A⊥ is 1
qLq(A) where

Lq(A) =
{
y ∈ (R∨)m : ∃s ∈ (R∨q )d,Bs = y mod q

}
.

Hence, it suffices to obtain a probabilistic lower bound on λ∞1 (Lq(A)), for A uniform in Rm×dq .
Similarly, for reducing M-SIS to M-SIVP, one is led to bounding λmn(A⊥). As λN (Λ) ≤

N/λ1(Λ) ≤ N3/2/λ∞1 (Λ∗) for any N -dimensional Λ, it is also sufficient to obtain a lower bound
for λ∞1 (Λ∗).

Lemma 5.42. Let n,m, d, q be positive integers with d ≤ m and n a power of 2. We have:

Pr
A←↩U(Rm×dq )

[
λ∞,21 (Lq(A)) ≥ 1

8
√
n
q1− d

m

]
≥ 1− 2−n,

where λ∞,21 (·) refers to the lattice minimum with respect to ‖ · ‖∞,2.

Proof. We generalize and adapt the proof of [SS11, Le. 8] (see also [SS13, Le. 3.2]. By the union
bound, the probability that Lq(A) contains a nonzero vector of infinity norm ≤ B := 1

8
√
n
q1− d

m

is bounded from above by:∑
t ∈ (R∨q )m

0 < ‖t‖∞,2 ≤ B

∑
s∈(R∨q )d

Pr
A←↩U(Rm×dq )

[As = t] =
∑

t ∈ (R∨q )m
0 < ‖t‖∞,2 ≤ B

∑
s∈(R∨q )d

∏
i≤m

Pr
a←↩U(Rdq )

[aT s = ti].

We now consider the probability (over the randomness of a) that aT s = ti. For this purpose,
we consider the decomposition of Rq as a Cartesian product of finite fields. By the Chinese
Remainder Theorem, we know that Rq ' R∨q ' Fqδ × . . . × Fqδ for some integer δ dividing n
(there are n/δ copies of the finite field of qδ elements). Now, the equality aT s = ti holds if and
only if it holds over all n/δ CRT components. Wlog we consider the first one. If ti and all the
coordinates of s are zero, then the probability is 1. Otherwise, if ti or some coordinate of s is
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5.3. Converse reduction

nonzero on that first CRT component, then the probability is ≤ q−δ. As a consequence, the
probability under scope is bounded from above by:∑

S⊆[n/δ]

∑
s ∈ (R∨q )d

∀i, si is 0 on S

∑
t ∈ (R∨q )m

0 < ‖t‖∞,2 ≤ B
∀i, ti is 0 on S

qm(|S|δ−n) ≤
∑

S⊆[n/δ]

∑
t ∈ (R∨q )m

0 < ‖t‖∞,2 ≤ B
∀i, ti is 0 on S

q(m−d)(|S|δ−n).

We now attempt to bound the number of t’s in R∨ such that 0 < ‖t‖ ≤ B and t is 0 on all CRT
components corresponding to S. As R∨ = 1

nR, it suffices to bound the number of t’s in R such
that 0 < ‖t‖ ≤ nB and t is 0 on all CRT components corresponding to S.

The latter condition implies that t is a nonzero element of an ideal I of R of algebraic
norm q|S|δ. Let x ∈ I reaching λ1(I). By the arithmetic-geometric inequality, we have:

λ1(I) = ‖x‖ ≥
√
nN (x)1/n =

√
nN ((x))1/n ≥

√
nN (I)1/n =

√
nq|S|δ/n.

As a result, there is no such t when |S| ≥ (1 − d/m)n/δ. If |S| ≤ (1 − d/m)n/δ, then we are
looking for the number of points of the (ideal) lattice I in the hyperball of radius nB and center 0.
All such points are away from one another by at least λ1(I). Therefore, by the pigeon-hole
principle, there are at most (2nB/λ1(I))n ≤ 4−nqn−ndm −|S|δ such points.

Now, the probability under scope can be bounded from above as

4−n ·
∑

S⊆[(1−d/m)n/δ]

q(m−d)(|S|δ−n) · qmn−nd−m|S|δ ≤ 2−n.

This completes the proof of the lemma.
As a consequence of the result above and the preceding discussion, we obtain the following

converse to Theorem 5.10. Note that even for d = 1 (i.e., for an R-SIS instance), the resulting
Mod-GIVP instance has module rank m: This result does not provide a reduction from R-SIS to
Id-GIVP (the module rank in Mod-GIVP is m, which is possibly much larger than d).

Theorem 5.43. For any d ≥ 1 and ε(N) = N−ω(1), there is a polynomial time reduction from
solving M-SISq,m,β to solving Mod-GIVPηεγ (with module rank m), for any m(N), q(N), β(N)
and γ(N) such that β ≥ γ

√
Nω

(√
log(N/ε)

)
· q dm and m, log q ≤ poly(N).

5.3.2 From Module-LWE to Mod-GIVP
One of the classical ways for solving LWE consists in solving an associated SIS instance [MR09].
We propose an adaptation of this approach to module lattices: We reduce M-LWE to M-SIS and
then combine this reduction with Theorem 5.43.

Let us sample s uniformly in (R∨q )d, and ψ from Υα. More precisely, we sample xi from Γ(2, 1)
for i ∈ J, define ri = rν−i = α

√
1 +
√
nxi, and let ψ = Dr. Assume that we have access to

arbitrarily many samples (ai, bi) ∈ Rdq × TR∨ with ai uniform in Rdq and all the bi’s uniform and
independent in TR∨ , or all the bi’s of the form bi = 1

q 〈ai, s〉+ ei with the ei’s are sampled from ψ.
Our goal is to determine with noticeable advantage which situation we are in.

We consider m such samples (with m to be optimized later). Let A ∈ Rm×dq be the matrix
whose rows are the ai’s. By solving M-SISq,m,β for AT , we obtain a nonzero vector z ∈ Rm such
that ‖z‖ ≤ β and zt ·A = 0 mod q. Now, we compute 〈z,b〉, where b ∈ TmR∨ is the vector made of
the bi’s. If the bi’s are uniform independent of the ai’s, then the inner product 〈z,b〉 is uniformly
distributed in TR∨ . Otherwise, we have 〈z,b〉 = 〈z, e〉 (modulo R∨), where e is the vector made of
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the ei’s. By Lemma 1.45, we have that 〈z, e〉 is distributed as Dr′ with r′j = rj ·
√∑

k≤m |σj(zk)|2

for all j ∈ Z×ν . As a consequence, we have

‖〈z,b〉‖ ≤ t
√
n ·max

j
|r′j |

≤ t
√
n · ‖z‖ ·max

j
|rj | ≤ 2tn3/4αβ ·max

j
|xj |,

with probability ≥ 1− 2−Ω(nt2) over the randomness of the ei’s. Furthermore, as we have |xj | ≤ t
with probability ≥ 1 − (2 + t)e−t for all j, we obtain that the bound above is itself smaller
than 2t2n3/4αβ with probability ≥ 1 − nt2−Ω(t). As R∨ = 1

nR, if the latter upper bound is
smaller than 1

4n , then 〈z,b〉 will be unexpectedly small.
Overall, we have proved that if β is such that n7/4ω(log(N)) ·αβ < 1, then we can distinguish

between the two challenge distributions with non-negligible advantage. By Theorem 5.43, we
thus obtain a reduction from Mod-GIVPηεγ with module rank m to M-LWEq,Υα , if γ is such
that αγn7/4

√
Nω(

√
log(N/ε))q dm < 1. Taking m = d log q leads to the following result.

Theorem 5.44. For any d ≥ 1 and ε(N) = N−ω(1), there is a probabilistic polynomial time
reduction from solving M-LWEq,Υα over Rdq to solving Mod-GIVPηεγ (with module rank d log q),
for any α(N) and γ(N) such that 1

α ≥ γN
3/2ω(

√
log(N/ε)) and log q ≤ poly(N).
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Part Three

Cryptographic Constructions:
Group Signature

Group signatures are cryptographic primitives where users can anonymously sign messages in
the name of a population they belong to. Gordon et al. [GKV10] suggested the first realization
of group signatures based on lattice assumptions in the random oracle model. A significant
drawback of their scheme is its linear signature size in the cardinality N of the group. A recent
extension proposed by Camenisch et al. [CNR12] suffers from the same overhead. In Chapter 7,
we describe the first lattice-based group signature schemes where the signature and public key
sizes are essentially logarithmic in N (for any fixed security level). Our basic construction only
satisfies a relaxed definition of anonymity (just like the Gordon et al. system) but readily extends
into a fully anonymous group signature (i.e., that resists adversaries equipped with a signature
opening oracle). We prove the security of our schemes in the random oracle model under the SIS
and LWE assumptions.

Support of membership revocation is a desirable functionality for any group signature scheme.
Among the known revocation approaches, verifier-local revocation (VLR) seems to be the most
flexible one, because it only requires the verifiers to possess some up-to-date revocation information,
but not the signers. All of the contemporary VLR group signatures [BS04, NF05, NF06, LV09,
BCN+10] operate in the bilinear map setting. In Chapter 8, we introduce the first lattice-based
VLR group signature. This scheme has the same logarithmic-size signatures as in Chapter 7, it
supports membership revocation, but has weaker security assumption and resists weaker attackers.
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Chapter 6

Group Signatures

Group signatures are a core cryptographic primitive that paradoxically combines the properties
of authenticity and anonymity. They are useful in many real-life applications including trusted
computing platforms, auction protocols or privacy-protecting mechanisms for users in public
transportation.

Parties involved in such a system are a special entity, called the group manager, and group
members. The manager holds a master secret key, generates a system-wide public key, and admin-
isters the group members, by providing to each of them an individual secret key that will allow
them to anonymously sign on behalf of the group. In case of dispute, the manager (or a separate
authority) is able to determine the identity of a signer via an opening operation. This fundamental
primitive has been extensively studied, from both theoretical and practical perspectives: It has
been enriched with many useful properties, and it has been implemented in the contexts of trusted
computing (using privacy-preserving attestation [Bri03]) and of traffic management (e.g., the
Vehicle Safety Communications project of the U.S. Dept. of Transportation [IPWG03]).

Group signatures were originally proposed by Chaum and van Heyst [CvH91] and made
scalable by Ateniese et al. in [ACJT00]. Proper security models were introduced in [BMW03]
and [BSZ05, KY06] (for dynamic groups), whereas more intricate and redundant properties were
considered hitherto. The model of Bellare et al. [BMW03] requires two main security properties
called full anonymity and full traceability. The former notion means that signatures do not leak
the identities of their originators, whereas the latter implies that no collusion of malicious users
can produce a valid signature that cannot be traced to one of them. Bellare et al. [BMW03] proved
that trapdoor permutations suffice to design group signatures, but their theoretical construction
was mostly a proof of concept. Nevertheless, their methodology has been adapted in practical
constructions: Essentially, a group member signs a message by verifiably encrypting a valid
membership certificate delivered by the authority, while hiding its identity. While numerous
schemes (e.g., [ACJT00, CL02, CL04, BBS04]) rely on the random oracle model (ROM), others
are proved secure in the standard model (e.g., [BMW03, BSZ05, BW06, BW07, Gro07]). Except
theoretical constructions [BMW03, BSZ05], all of these rely on the Groth-Sahai methodology
to design non-interactive proof systems for specific languages involving elements in bilinear
groups [GS08]. This powerful tool led to the design of elegant compact group signatures [BW07,
Gro07] whose security relies on pairing-related assumptions. The resulting signatures typically
consist in a constant number of elements of a group admitting a secure and efficient bilinear map.

One desirable functionality of group signatures is the support for membership revocation. For
example, misbehaving members who issue signatures for documents, which they are not allowed
to sign, should be revoked from the group. In these cases, if a group signature scheme does not
support revocation, then the whole system has to be re-initialized, which is obviously an unsuitable
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solution in practice. Currently there are two main revocation approaches for group signatures.
The first approach requires all the unrevoked members to update their signing keys after each
revocation ([ACJT00, CL02, BBS04, CG04],...). At the same time, all the signature verifiers need
to download the up-to-date group public key. As a consequence, it is sometimes inconvenient
to practically implement such schemes. The second approach, that is group signatures with
verifier-local revocation (VLR), only requires the verifiers to possess some up-to-date revocation
information, but not the signers. Since in most of real-life scenarios, the number of signature
verifiers is much smaller than the number of signers, this revocation approach is more flexible and
more practical. Moreover, it is akin to that of the traditional Public Key Infrastructures, where
the verifiers use the latest Certificate Revocation List to check the public key of the signer. The
notion of VLR group signatures was introduced by Brickell [Bri03], then formalized by Boneh and
Shacham [BS04], further investigated and extended by Nakanishi and Funabiki [NF05, NF06],
Libert and Vergnaud [LV09], and Bichsel et al. [BCN+10]. All the existing VLR group signatures
schemes operate in the bilinear map setting.

In this chapter, we first give preliminaries specific to group signatures we construct in this third
part of the thesis. In particular we recall the definition of a zero-knowledge proof of knowledge
and how to construct such a proof for the SIS and LWE problems. We then give the definition
and security properties of the two models of group signatures that we study: The original model
of Bellare, Micciancio and Warinschi [BMW03] and the model of Boneh and Shacham [BS04]
which allows verifier local revocation.

6.1 Preliminaries

In this section, we recall the definition of one-time signatures, commitment schemes and proofs of
knowledge. We also describe a zero-knowledge proof of knowledge for an ISIS solution.

6.1.1 One-time signatures

A one-time signature scheme consists of a triple of PPT algorithms Πots = (G,S,V) such that,
on input of a security parameter 1λ, G generates a one-time key pair (SK,VK); S is a possibly
randomized algorithm that outputs a signature sig ← S(SK,M) on input of SK and M ; and
V(VK, sig,M) is a deterministic algorithm that outputs 1 (for accept) or 0 (for reject). The
standard correctness requirement mandates that V always accepts the signatures generated by S.

In a strongly unforgeable one-time signature, the adversary is not only unable to forge a
signature on a new message but, in addition, no PPT adversary can create a new signature for a
previously signed message.

Definition 6.1. Πots = (G,S,V) is a strongly unforgeable one-time signature if the probability

AdvOTS(n) = Pr
[
(SK,VK)← G(1n); (M,St)← F(VK); sig ← S(SK,M);

(M ′, sig′)← F(VK,M, sig, St) : V(VK′, sig′,M ′) = 1 ∧ (M ′, sig′) 6= (M, sig)
]
,

is negligible for any PPT forger F , where St denotes F ’s state information across stages.
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6.1.2 The KTX string commitment scheme
We define a commitment scheme. Such a scheme allows a user to commit a chosen value and
keep it hidden until the user chooses to reveal this value to the other.

Definition 6.2. A commitment scheme (KGen,Com,Ver) consists of three PPT algorithms:

KGen(1λ)→ pk. On input 1λ, the key generation algorithm outputs a public commitment key pk.

Com(m, pk)→ (c, d). On input a message m ∈M and pk, the commitment algorithm outputs a
commitment/opening pair (c, d).

Ver(pk,m, c, d)→ {0, 1}. On input the message m, the key pk and the pair (c, d), the verification
algorithm outputs 0 or 1.

In our case, it satisfies the following properties:

• Correctness: The algorithm Ver evaluates to 1 whenever the inputs where computed by an
honest party:

Pr[Ver(pk,m, c, d) = 1; pk ← KGen(1λ),m ∈M, (c, d)← Com(m, pk)] = 1.

• Computationally binding: With overwhelming probability over the choice of the key pk, no
commitment c can be opened in two different ways:

Pr [(Com(pk,m) = Com(pk,m′)) ∧ (m 6= m′)] ≤ negl(λ).

• Statistically hiding: A commitment c statistically hides the committed message: with over-
whelming probability over the choice of pk, for every m,m′ ∈ M and (c, d) ← Com(m, pk),
(c′, d′)← Com(m′, pk) the distributions c and c′ are statistically indistinguishable.

Kawachi et al. [KTX08] constructed a string commitment scheme COM : {0, 1}∗×{0, 1}m/2 →
Znq , such that:

• If m > 2n(1 + δ) log q for some positive constant δ, then COM is statistically hiding.

• If the SIS∞n,m,q,1 problem is hard, then COM is computationally binding.

For simplicity, we will omit the randomness of the commitment when we use this scheme in
Chapter 8. Also, we implicitly choose m sufficiently large, e.g., m = 4n log q, to make COM
statistically hiding.

6.2 Zero-knowledge proofs of knowledge

6.2.1 Definition
We use the definitions of [BG92, PV08]. We first define a non-interactive proof system for a
language L. We denote by λ the security parameter associated to the language.

Definition 6.3. A pair (P, V ) is a non-interactive proof system for a language L if V is polynomial-
time and the following two conditions hold for some functions c(λ), s(λ) : N→ [0, 1] and for all
λ ∈ N:

• Completeness: For every x ∈ L, Pr[V (x, r, P (x, r)) accepts] ≥ 1− c(λ),
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• Soundness: For every x /∈ L, Pr[∃π : V (x, r, π) accepts] ≤ s(λ).

The probability are taken over the choice of the random input r and the random choices of P .
The function c(λ) is called the completeness error, and the function s(λ) is called the soundness
error. We also require c(λ) + s(λ) ≤ 1− 1/poly(λ).

We now define the notion of zero-knowledge, that we will use in a non-interactive setting.

Definition 6.4. A non-interactive proof system (P, V ) for a language L is (statistically) zero-
knowledge if there exists a probabilistic polynomial time algorithm S such that for all x ∈ L, the
distributions S(x) and (r, P (x, r)) are computationally (resp. statistically) indistinguishable, for
a random input r.

The principle of zero knowledge proof of knowledge (ZKPoK) is the following. We consider
two parties: a Verifier V and a Prover P, then the ZKPoK allows the Prover to show to the
Verifier that he knows an information without revealing anything about it. We use them for
binary relations R, where the parties share x and the Prover knows y such that (x, y) ∈ R. We
call y the witness of the Prover. The protocol satisfies three properties: completeness (the Verifier
always accepts if the Prover is honest), zero-knowledgeableness (as defined above), and finally,
soundness (from every Prover P which can make the verifier accept with probability larger than
κ (defined in Definition 6.5) a y′ can be extracted efficiently such that (x, y′) ∈ R).

For a binary relation R we define R(x) = {y : (x, y) ∈ R} and LR = {x : ∃y s.t. (x, y) ∈ R}.
We now define formally a proof of knowledge [BG92].

Definition 6.5. Let R be a binary relation, let V be a deterministic polynomial time function,
and let c(λ), κ(λ) : N→ [0, 1] be functions. We say that V is a knowledge verifier for the relation R
with completeness error c and knowledge error κ if the following conditions hold:

• Completeness: There exists a probabilistic function P such that for all x ∈ LR,

Pr
r,P

[V (x, r, P (x, r)) accepts] ≥ 1− c(λ),

• Validity: There exists a probabilistic oracle machine K such that for every probabilistic
function P and every x ∈ LR where px = Prr,P [V (x, r, P (x, r)) accepts] > κ(λ), K outputs a
string from R(x) in expected time at most poly(λ)/(px − κ(λ)).

The oracle machine K is called a universal knowledge extractor.

Finally a witness-indistinguishable [FS90] proof of knowledge has the same properties as a
zero-knowledge proof except the zero-knowledge one. Instead of learning nothing about the
witness, this kind of proof guarantees that the Verifier will not be able to distinguish between
two different witnesses.

6.2.2 Computational Problems

The security of the schemes presented in Chapters 7 and 8 provably relies (in the ROM) on the
assumption that the ISIS (and LWE in Chapter 7) problems are hard. In particular because we
use in both scheme a zero-knowledge proof of knowledge constructed on this assumption.
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The ISIS problem. We define the following relation:

RISISp =
{

(A,y, β;x) ∈ Zm×nq × Znq ×Q× Zm : xT ·A = yT ∧ ‖x‖p ≤ β
}
,

where p corresponds to the choice of the norm.
We will make use in Chapter 7 of a non-interactive zero-knowledge proof of knowledge

(NIZPoK) protocol, which can be rather directly derived from [Lyu08, Lyu12], for the relation
RISIS (for p=2, using the Euclidean norm). And we will use in Chapter 8 an adaptation of the
“Stern Extension” proof system of [LNSW13], which is a NIZPoK protocol for the relation RISIS∞
(for the infinity norm). We discuss this choice in Remark 6.6.

Non-interactive protocol. Those two protocols, detailed in the next two sections, are derived
from the parallel repetition of a Σ-protocol with binary challenges. A Σ-protocol has three
exchanges between the Prover and the Verifier: First the Prover sends a commitment Comm,
then the Verifier sends a challenge Chall, finally the Prover sends the response Resp and the
Verifier can check if he accepts or not. To make this kind of protocol non-interactive, one can
use the Fiat-Shamir heuristic [FS86] and implements the challenge using the random oracle H(·).
We call ProveISIS and VerifyISIS the PPT algorithms run by the Prover and the Verifier when the
scheme is rendered non-interactive.

• Algorithm ProveISIS takes (A,y, β;x) as input, and generates a transcript (Comm,Chall,Resp).

• Algorithm VerifyISIS takes (A,y, β) and such a transcript as inputs, and returns 0 or 1.

The scheme has completeness error 2−Ω(n): if ProveISIS is given as input an element of RISIS, then
given as input the output of ProveISIS, VerifyISIS replies 1 with probability ≥ 1− 2−Ω(n) (over the
randomness of ProveISIS).

Also, there exists a PPT algorithm SimulateISIS that, by reprogramming the random oracleH(·),
takes (A,y, β) as input and generates a transcript (Comm,Chall,Resp) whose distribution is
within statistical distance 2−Ω(n) of the genuine transcript distribution. Finally, there also
exists a PPT algorithm ExtractISIS that given access to a time T algorithm A that generates
transcripts accepted by VerifyISIS with probability ε, produces, in time poly(T, 1/ε) a vector x′
such that (A,y,O(β ·m · n);x′) ∈ RISIS.

The LWE problem. In Chapter 7, we will also need a NIZKPoK protocol for the following
language:

RLWE =
{

(A,b, α; s) ∈ Zm×nq × Zmq ×Q× Znq : ‖b−A · s‖ ≤ αq
√
m
}
.

As noted in [Lyu12], we may multiply b by a parity check matrix G ∈ Z(m−n)×m
q of A and

prove the existence of small e ∈ Zm such that eT ·GT = bT ·GT . This may be done with the
above NIZKPoK protocol for RISIS. We call ProveLWE, VerifyLWE, SimulateLWE and ExtractLWE the
obtained PPT algorithms.

6.2.3 Proof of Knowledge of an ISIS Solution
In [Lyu08], Lyubashevsky described an identification scheme whose security relies on the hardness
of the SIS problem. Given a public vector y ∈ Znq and a matrix A ∈ Zm×nq , the prover holds a
short secret x and generates an interactive witness indistinguishable proof of knowledge of a short
vector x′ ∈ Zm such that x′T ·A = yT mod q. A variant was later proposed in [Lyu12], which
enjoys the property of being zero-knowledge (when the distribution of the transcript is conditioned
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on the prover not aborting). We present an adaptation of [Lyu12, Fig. 1] (still enjoying the same
zero-knowledgedness property): the secret is a single vector, the challenges are binary (which we
use for the extraction procedure), and we increase the standard deviation of the commited vector
to lower the rejection probability (we use a parallel repetition of the basic scheme, and want the
probability that there is a reject among all the parallel iterations to be sufficiently away from 1).

Assume the prover P wishes to prove knowledge of an x such that xT · A = yT mod q
and ‖x‖ ≤ β, where y and A are public. The protocol takes place between the prover P and
the verifier V and proceeds by the k-times parallel repetition of a basic Σ-protocol with binary
challenges. We set σ = Θ(β

√
mn) and ML as specified by [Lyu12, Th. 4.6]. Thanks to our larger

value of σ, we obtain (by adapting [Lyu12, Le. 4.5]) that ML is now 1− Ω(1/n).

1. Commitment: The prover P generates a commitment Comm = (wi)i≤k where, for each
i ≤ k, wi ∈ Znq is obtained by sampling yi ←↩ DZm,σ and computing wT

i = yTi ·A mod q. The
message Comm is sent to V .

2. Challenge: The verifier V sends a challenge Chall←↩ {0, 1}k to P .

3. Response: For i ≤ k, the prover P does the following.

a. Compute zi = yi + Chall[i] · x, where Chall[i] denotes the ith bit of Chall.

b. Set zi to ⊥ with probability min(1, exp(−π‖z‖2/σ2)
ML·exp(−π‖Chall[i]·x−z‖2/σ2) ).

Then P sends the response Resp = (zi)i≤k to V .

Verification: The verifier V checks the transcript (Comm,Chall,Resp) as follows:

a. For i ≤ k, set di = 1 if ‖zi‖ ≤ 2σ
√
m and zTi ·A = wT

i + Chall[i] · yT . Otherwise, set di = 0.

b. Return 1 (and accept the transcript) if and only if
∑
i≤k di ≥ 0.65k.

Figure 6.1: Proof of knowledge of an ISIS solution.

The protocol has completeness error 2−Ω(k). Further, by [Lyu12, Th. 4.6], the distribution of
the transcript conditioned on zi 6= ⊥ can be simulated efficiently. Note that if we implement the
challenge phase with a random oracle, we can compute the zi’s for increasing values of i, and
repeat the whole procedure if zi = ⊥ for some i. Thanks to our choice of σ, for any k ≤ O(n), the
probability that zi = ⊥ for some i is ≤ c, for some constant c < 1. Thanks to this random-oracle-
enabled rejection, the simulator produces a distribution that is within statistical distance 2−Ω(n)

from the transcript distribution.
Finally, the modified protocol provides special soundness in that there is a simple extractor

that takes as inputs two valid transcripts (Comm,Chall,Resp), (Comm,Chall′,Resp′) with distinct
challenges Chall 6= Chall′ and obtains a witness x′ such that x′T · A = yT mod q and ‖x′‖ ≤
O(σ
√
m) ≤ O(βmn).

6.2.4 The LNSW Proof System
Alternatively, Ling et al. [LNSW13] proposed a Stern-type zero-knowledge proof of knowledge for
the ISIS∞n,m,q,β problem that relies on the ISIS assumption. They achieve this feature by using a
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Decomposition-Extension technique. We use an adaptation of this technique in Chapter 8.
The input of this protocol is a pair (A,y), and the prover also knows a x such that

xTA = y mod q. We denote by B3m the set of all vectors in {−1, 0, 1}3m having exactly m
coordinates −1; m coordinates 0; and m coordinates 1. And we denote by Sk the symmetric
group of all permutations of k elements. The prover and the verifier starts by both form the
matrix A′ ∈ Z3m×n

q , by appending 2m zero rows to A. Then the prover uses the following steps
on x.

• Elementary Decomposition. On input a vector x = (x1, x2, . . . , xm) ∈ Zm such that
‖x‖∞ ≤ β, the procedure EleDec outputs p = blog βc+ 1 vectors z̃1, . . . , z̃p ∈ {−1, 0, 1}m, such
that

∑p
j=1 2j · z̃j = x. This procedure works as follows:

1. For each i ∈ {1, . . . ,m}, express xi as vi = 2 · xi,1 + 22 · xi,2 + . . . + 2p · xi,p, where
∀j ∈ {1, . . . , p} : xi,j ∈ {−1, 0, 1}.

2. For each j ∈ {1, . . . , p}, let z̃j := (x1,j , x2,j , . . . , xm,j) ∈ {−1, 0, 1}m. Output z̃1, . . . , z̃p.

• Elementary Extension. On input a vector z̃ ∈ {−1, 0, 1}m, the procedure EleExt extends z̃
to a vector z ∈ B3m. This procedure works as follows:
1. Let λ(−1), λ(0) and λ(1) be the numbers of coordinates of z̃ that equal to −1, 0, and 1

respectively.
2. Pick a random vector ŵ ∈ {−1, 0, 1}2m that has exactly (m − λ(−1)) coordinates −1,

(m− λ(0)) coordinates 0, and (m− λ(1)) coordinates 1. Output z =
(
z̃‖ẑ
)
∈ B3m.

We denote by z the decomposition-extension of the element x following these two procedures.
We have that: ( p∑

j=1
2j · zj

)T ·A′ = yT mod q ⇔ xTA = yT mod q

We describe the interactive proof system of [LNSW13] in Figure 6.2.
It is shown in [LNSW13] that this proof system is statistically zero-knowledge if COM is

statistically hiding, and that it is a proof of knowledge for the relation RISIS∞ with knowledge
error κ = 2/3.
Remark 6.6. In the two constructions we give in Chapters 7 and 8, we need a ZKPoK for the
ISIS relation. In Chapter 7, we use the construction of Figure 6.1, as we need the property of
special soundness to be able to prove the disjunction of two relations (and the second construction
of [LNSW13] does not have this property). Whereas in Chapter 8, we use an adaptation of
the [LNSW13] proof system, as we will need to modify the proof by adding some conditions in
the relation. This second proof system is more versatile, and then it is possible to adapt it to
those new conditions.

6.3 Group signature model

This section recalls the model of Bellare, Micciancio and Warinschi [BMW03], which assumes
static groups.

6.3.1 Definition
A group signature scheme GS consists of a tuple of four PPT algorithms (Keygen,Sign,Verify,Open)
with the following specifications:
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1. Commitment: The prover samples p permutations π1, . . . , πp ←↩ U(Sm), and p vectors
r1, . . . , rp ←↩ U(Z·3mq ). Then it sends the commitment CMT =

(
c1, c2, c3

)
∈ (Znq )3 to the

verifier, where 
c1 = COM

(
{πj}pj=1,

(∑p
j=1 2j · rj

)T ·A′ mod q
)
,

c2 = COM
(
{πj(rj)}pj=1

)
,

c3 = COM
(
{πj(zj + rj)}pj=1

)
.

(6.1)

2. Challenge: The verifier sends a challenge Ch←↩ U({1, 2, 3}) to the prover.

3. Response: Depending on the challenge, the prover computes the response RSP differently:

• Case Ch = 1: ∀j ∈ {1, . . . , p}, let vj = πj(zj), wj = πj(rj) and set:

RSP =
(
{vj}pj=1, {wj}pj=1

)
. (6.2)

• Case Ch = 2: ∀j ∈ {1, . . . , p}, let φj = πj , sj = zj + rj and set:

RSP =
(
{φj}pj=1, {sj}

p
j=1
)
. (6.3)

• Case Ch = 3: ∀j ∈ {1, . . . , p}, let ψj = πj , hj = rj and set:

RSP =
(
{ψj}pj=1, {hj}

p
j=1
)
. (6.4)

Verification: Receiving the response RSP, the verifier proceeds as follows:

• Case Ch = 1: Parse RSP as in (6.2). Check that ∀j ∈ {1, . . . , p} : vj ∈ B3m, and that:

c2 = COM
(
{wj}pj=1

)
and c3 = COM

(
{vj + wj}pj=1

)
.

• Case Ch = 2: Parse RSP as in (6.3). Check that:{
c1 = COM

(
{φj}pj=1,

(∑p
j=1 2j · sj

)T ·A′ − uT mod q
)

c3 = COM
(
{φj(sj)}pj=1

)
.

• Case Ch = 3: Parse RSP as in (6.4). Check that:{
c1 = COM

(
{ψj}pj=1, (

∑p
j=1 2j · hj)T ·A′ mod q

)
c2 = COM

(
{ψj(hj)}pj=1

)
.

The verifier outputs Valid if and only if all the conditions hold. Otherwise, he outputs Invalid.

Figure 6.2: The LNSW SternExt proof system.
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Keygen(1λ, 1N )→ (gpk, gmsk, gsk). The key generation algorithm takes as inputs the security pa-
rameter λ and the maximum number of group members N . It returns a tuple (gpk, gmsk, gsk)
where gpk is the group public key, gmsk is the group manager secret key, and gsk is
an N -dimensional vector of secret keys: gsk[j] is the signing key of the j-th user, for
j ∈ {0, . . . , N − 1}.

Sign(gpk, gsk
[
j
]
,M)→ Σ. The signing algorithm takes as inputs the group public key gpk, a

signing key gsk[j] and a message M ∈ {0, 1}∗. Its output is a signature Σ ∈ {0, 1}∗ on M .

Verify(gpk,M,Σ)→ {0, 1}. The verifying algorithm is deterministic and takes as inputs the group
public key gpk, a message M and a putative signature Σ of M . It outputs either 0 or 1.

Open(gpk, gmsk,M,Σ)→ {j,⊥}. The opening algorithm is deterministic and takes as inputs the
group public key gpk, the group manager secret key gmsk, a message M and a valid group
signature Σ w.r.t. gpk. It returns an index j ∈ {0, . . . , N − 1} or a special symbol ⊥ in case
of opening failure.

The group signature scheme must be correct, i.e., for sufficiently large integers λ and any
integer N , all (gpk, gmsk, gsk) obtained from Keygen with (1λ, 1N ) as input, all indices j ∈
{0, . . . , N − 1} and M ∈ {0, 1}∗:

Verify(gpk,M,Sign(gpk, gsk[j],M)) = 1 and Open(gpk, gmsk,M, Sign(gpk, gsk[j],M)) = j,

with probability negligibly close to 1 over the internal randomness of Keygen and Sign.
Bellare et al. [BMW03] gave a unified security model for group signatures in static groups.

The two main security requirements are traceability and anonymity. The former asks that no
coalition of group members be able to create a signature that cannot be traced to one of them.
The latter implies that, even if all the private keys are given to the adversary, signatures generated
by two distinct group members should be computationally indistinguishable.

6.3.2 Anonymity
Anonymity requires that, without the group manager’s secret key, an adversary cannot recognize
the identity of a user given its signature. More formally, the attacker, modeled as a two-stage
adversary (choose and guess), is engaged in the first random experiment which runs as follows.

1. Setup. The challenger runs KeyGen(1λ, 1N ) to generate (gpk, gmsk, gsk), then gives gpk and
gsk to the adversary A.

2. Choose stage. Adversary A can make queries to the following oracles:

• Open: Query for opening on any message M ∈ {0, 1}∗ and signature Σ. The challenger
returns the identity i of the user.

3. Challenge. Adversary A outputs a message M∗, two indices j0 and j1 and a state st. The
challenger chooses a bit b ←↩ U({0, 1}), computes a signature of user jb on M∗ as Σ∗ =
Sign(gpk, gsk[jb],M∗), and returns Σ∗ and st to A.

4. Guess stage. After the challenge phase, A can still make queries as before, but with the
following restrictions: it is not allowed to make any open query for user j0 or user j1.

5. Output. Eventually, A outputs a bit b′. It wins the game if b′ = b.
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The advantage of such an adversary A against a group signature GS with N members is
defined as

Advanon
GS,A(λ,N) =

∣∣Pr[Expanon−1
GS,A (λ,N) = 1]− Pr[Expanon−0

GS,A (λ,N) = 1]
∣∣ .

In our first scheme of Chapter 7, we consider a weak anonymity scenario in which the adversary
is not allowed to query an opening oracle. This relaxed model is precisely the one considered
in [GKV10], and was firstly introduced in [BBS04]. Nonetheless, we provide in Section 7.3 a
variant of our scheme enjoying chosen-ciphertext security. The adversary is then granted an
access to an opening oracle that can be called on any string except the challenge signature Σ?.

Definition 6.7 (Weak and full anonymity, [BMW03, BBS04]). A group signature scheme GS
is said to be weakly anonymous (resp. fully anonymous) if for all polynomial N(λ) and all PPT
adversaries A (resp. PPT adversaries A with access to an opening oracle which cannot be queried
for the challenge signature), Advanon

GS,A(λ,N) is a negligible function in the security parameter λ.

6.3.3 Full traceability
Full traceability ensures that all signatures, even those created by a coalition of users and the
group manager, pooling their secret keys together, can be traced to a member of the forging
coalition. Once again, the attacker is modeled as a two-stage adversary who is run within the
second experiment as follows.

1. Setup: Run KeyGen(1λ, 1N ) to obtain (gpk, gmsk, gsk). Adversary A is given (gpk, gmsk).
Set C = ∅.

2. Choose stage: Adversary A can make queries to the following oracles:

• Signing: On input a message M , and an index j, the oracle returns Σ = Sign(gpk, gsk[j],M).
• Corruption: On input an index j, the oracle adds j to the set C, and returns gsk[j].

3. Guess stage: Eventually, A outputs a message M∗ and a signature Σ∗.
The adversary wins the game, and the experiment returns 1, if:

a) Verify(gpk,Σ∗,M∗) = 1.
b) The opening algorithm outputs ⊥ or j such that j /∈ C.
c) The signature Σ∗ is non-trivial, i.e., A did not obtain Σ∗ by making a signing query on j∗

and M∗.

Otherwise the experiment returns 0.

Its success probability against GS is defined as

Succtrace
GS,A(λ,N) = Pr[Exptrace

GS,A(λ,N) = 1].

Definition 6.8 (Full traceability, [BMW03]). A group signature scheme GS is said to be
fully traceable if for all polynomial N(λ) and all PPT adversaries A, its success probabil-
ity Succtrace

GS,A(λ,N) is negligible in the security parameter λ.

6.4 Group signature with VLR model

The presentation in this section follows [BS04] and recalls the definition and properties of a group
signature scheme with verifier local revocation.
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6.4.1 Definition
A VLR group signature consists of threee following algorithms:

KeyGen(1λ, 1N )→ (gpk, gsk, grt). On input a security parameter λ and the number of group
users N , this PPT algorithm outputs a group public key gpk, an N -dimensional vector
of user secret keys gsk = [gsk[j]]j , and an N -dimensional vector of user revocation tokens
grt = [grt[j]]j , for j ∈ {0, . . . , N − 1}.

Sign(gpk, gsk
[
j
]
,M)→ Σ. On input gpk, a user secret key gsk[j], and a message M ∈ {0, 1}∗,

this PPT algorithm outputs a signature Σ.

Verify(gpk, RL,Σ,M)→ {0, 1}. On input gpk, a set of revocation tokens RL ⊆ {grt[j]}j , a
signature Σ, and the message M , this algorithm outputs either 0 or 1. The output 1
indicates that Σ is a valid signature on message M under gpk, and that the signer has not
been revoked.

The VLR group signature scheme must be correct, i.e., for all (gpk, gsk, grt) output by KeyGen,
M ∈ {0, 1}∗, and d ∈ {0, 1, . . . , N − 1}:

Verify(gpk, RL, Sign(gpk, gsk[j],M),M) = 1⇔ grt[j] 6∈ RL.

Remark 6.9. Any VLR group signature has an implicit tracing algorithm using grt as the tracing
key. The tracing algorithm works as follows: on input a valid signature Σ on a message M , it
reveals the signer of Σ by running Verify(gpk, RL = grt[j],Σ,M), for j = 0, 1, . . ., and outputting
the first index j∗ ∈ {0, 1, . . . , N − 1} for which the verification algorithm returns 0. The tracing
algorithm fails if and only if the given signature is properly verified for all j.

6.4.2 Selfless-anonymity
In the following selfless-anonymity game, the adversary’s goal is to determine which of the two
adaptively chosen keys generated a signature. He is not given access to either key.

1. Setup. The challenger runs KeyGen(1λ, 1N ) to generate (gpk, gsk, grt), then gives gpk to the
adversary A.

2. Queries. Adversary A can make queries to the following oracles:

• Signing: Query for signature of any user d on any message M ∈ {0, 1}∗. The challenger
returns the signature Σ = Sign(gpk, gsk[j],M).
• Corruption: Query for the secret key of any user of index j. The challenger returns gsk[j].
• Revocation: Query for the revocation token of any user of index j. The challenger re-
turns grt[j].

3. Challenge. Adversary A outputs a message M∗ and two indices j0 and j1, such that A never
made a corruption or revocation query for index j0 or j1. The challenger chooses a bit
b←↩ U({0, 1}), computes a signature of user of index jb on M∗ as Σ∗ = Sign(gpk, gsk[jb],M∗),
and returns Σ∗ to A.

4. Restricted Queries. After the challenge phase, A can still make queries as before, but with the
following restrictions: it is not allowed to make any corruption or revocation query for the
users of indices j0 and j1.
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5. Output. Eventually, A outputs a bit b′. It wins the game if b′ = b.

We define the adversary’s advantage in winning the game as AdvA =
∣∣Pr[b′ = b]− 1/2

∣∣. We say
that the VLR group signature is selfless-anonymous if AdvA is negligible.

Comparison with weak and full anonymity. The notion of selfless anonymity used in the definition
of a VLR group signature is weaker than the notions of weak and full anonymity defined for a
group signature: in the two last one, the adversary knows the secret keys of the users used in
the challenge. Indeed in the weak and full anonymity, the adversary has all the secret keys of
the users {gski} (note that he does not need a signing oracle, as he knows the secret key and
then can sign any message with one of them). In comparison, in the selfless anonymity game, the
adversary can make signing and corruption queries (to obtain a secret key of a user) but cannot
know the secret key of one of its two challenge indices. Moreover, in the full anonymity game the
adversary also has an opening oracle.

6.4.3 Traceability
The adversary’s goal in the traceability game is to forge a signature that cannot be traced to one
of the users in his coalition using the implicit tracing algorithm above. The traceability game is
defined as follows:

1. Setup: Run KeyGen(1λ, 1N ) to obtain (gpk, gsk, grt). Adversary A is given (gpk, grt).
Set U = ∅.

2. Queries: Adversary A can make queries to the following oracles:

• Signing: On input a message M , and an index j, the oracle returns Σ = Sign(gpk, gsk[j],M).
• Corruption: On input an index j, the oracle adds j to the set U , and returns gsk[j].

3. Forgery: Eventually, A outputs a message M∗, a set of revocation tokens RL∗ and a signa-
ture Σ∗.
The adversary wins the game if:

a) Verify(gpk, RL∗,Σ∗,M∗) = 1.
b) The (implicit) tracing algorithm fails or traces to a user outside of the coalition U \RL∗.
c) The signature Σ∗ is non-trivial, i.e., A did not obtain Σ∗ by making a signing query on M∗.

The probability that A wins the game, denoted by SuccPTA, is taken over the randomness of A,
algorithms KeyGen and Sign. We say that a VLR group signature is traceable if SuccPTA is
negligible.

Comparison with the traceability game for a group signature. The two traceability games are very
similar. The major differences are the informations given to the adversary which are relatives
to each scheme. In the group signature, the key used in Open to trace a group member is the
master secret key while in the VLR group signature the implicit tracing algorithm uses the set
of all the user revocation tokens (that only the authority knows). In the traceability game, the
challenger gives to the adversary the group public key and the key needed to trace: in one case
the master secret key and in the other one the set of all revocation tokens. After this phase, the
two games are similar: the adversary can make signing and corruption queries then outputs a
forgery (with a set of revocation tokens in the case of the VLR group signature). Then the three
conditions for the adversary to win the game are the same.
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Chapter 7

A Lattice-Based Group Signature with
Logarithmic Signature Size

Lattices and Group Signatures. While numerous works have been (successfully) harnessing the
power of lattices for constructing digital signatures (see Chapter 3, [LM08, GPV08, CHKP10,
Lyu09, Boy10, Lyu12], and references therein), only two works addressed the problem of efficiently
realizing lattice-based group signatures. The main difficulty to overcome is arguably the scarcity
of efficient and expressive non-interactive proof systems for statements involving lattices, in
particular for statements on the witnesses of the hard average-case lattice problems. This state
of affairs contrasts with the situation in bilinear groups, where powerful non-interactive proof
systems are available [GOS06, GS08].

In 2010, Gordon et al. [GKV10] described the first group signature based on lattice assumptions
using the Gentry et al. signature scheme [GPV08] as membership certificate, an adaptation of
Regev’s encryption scheme [Reg09] to encrypt it, and a zero-knowledge proof technique due to
Micciancio and Vadhan [MV03]. While elegant in its design principle, their scheme suffers from
signatures and public keys of sizes linear in the number of group members, making it utterly
inefficient in comparison with constructions based on bilinear maps [BBS04] or the strong RSA
assumption [ACJT00]. Quite recently, Camenisch et al. [CNR12] proposed anonymous attribute
token systems, which can be seen as generalizations of group signatures. One of their schemes
improves upon [GKV10] in that the group public key has constant size1 and the anonymity
property is achieved in a stronger model where the adversary is granted access to a signature
opening oracle. Unfortunately, all the constructions of [CNR12] inherit the linear signature size
of the Gordon et al. construction. Thus far, it remained an open problem to break the linear-size
barrier. This is an important challenge considering that, as advocated by Bellare et al. [BMW03],
one should expect practical group signatures not to entail more than poly-logarithmic complexities
in the group sizes.

Our Contributions. In this Chapter, we describe the first lattice-based group signatures featuring
sub-linear signature sizes. This is a joint work with F. Laguillaumie, B. Libert and D. Stehlé
published in [LLLS13]. If λ and N denote the security parameter and the maximal group size,
the public keys and signatures are Õ(λ2 · logN) bit long. Notice that no group signature scheme
can provide signatures containing o(logN) bits (such signatures would be impossible to open), so
that the main improvement potential lies in the Õ(λ2) factor. These first asymptotically efficient

1This can also be achieved with [GKV10] by replacing the public key by a hash thereof, and appending the
key to the signature.
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(in λ and logN) lattice-based group signatures are a first step towards a practical alternative to
the pairing-based counterparts. The security proofs hold in the ROM (as for [GKV10, CNR12]),
under the Learning With Error (LWE) and Short Integer Solution (SIS) assumptions. While our
basic system only provides anonymity in a relaxed model (like [GKV10]) where the adversary has
no signature opening oracle, we show how to upgrade it into a fully anonymous group signature,
in the anonymity model of Bellare et al. [BMW03]. This is achieved at a minimal cost in that the
signature length is only increased by a constant factor. In contrast, Camenisch et al. [CNR12,
Se. 5.2] achieve full anonymity at the expense of inflating their basic signatures by a factor
proportional to the security parameter.

Construction Overview. Our construction is inspired by the general paradigm from [BMW03]
consisting in encrypting a membership certificate under the authority’s public key while providing
a non-interactive proof that the ciphertext encrypts a valid certificate belonging to some group
member. Nevertheless, our scheme differs from this paradigm in the sense that it is not the
certificate itself which is encrypted. Instead, a temporary certificate, produced at each signature
generation, is derived from the initial one and encrypted, with a proof of its validity.

We also depart from the approach of [GKV10] at the very core of the design, i.e., when
it comes to provide evidence that the encrypted certificate corresponds to a legitimate group
member. Specifically, Gordon et al. [GKV10] hide their certificate, which is a GPV signature
(described in Section 3.2.3), within a set of N − 1 (encrypted) GPV pseudo-signatures that satisfy
the same verification equation without being short vectors. Here, to avoid the O(N) factor
in the signature size, we take a different approach which is reminiscent of the Boyen-Waters
group signature (described in Section 3.2.5). Each group member is assigned a unique `-bit
identifier id = id[1] . . . id[`] ∈ {0, 1}`, where ` = dlog2Ne. Its certificate is an extension of a
Boyen signature [Boy10] consisting in a full short basis of a certain lattice (instead of a single
vector), which allows the signer to generate temporary certificates composed of a pair x1,x2 ∈ Zm
of discrete Gaussian vectors such that

xT1 ·A + xT2 · (A0 +
∑

1≤i≤`
id[i] ·Ai) = 0 mod q. (7.1)

Here, q is a small bit length integer and A,A0, . . . ,A` ∈ Zm×nq are part of the group public
key. Our choice of Boyen’s signature as membership certificate is justified by it being one of the
most efficient known lattice-based signatures proven secure in the standard model, and enjoying
a simple verification procedure corresponding to a relation for which we can design a proof of
knowledge. A signature proven secure in the standard model allows us to obtain an easy-to-prove
relation that does not involve a random oracle. As noted for example in [ACJT00, CL02, CL04],
signature schemes outside the ROM make it easier to prove knowledge of a valid message-signature
pair in the design of privacy-preserving protocols.

We encrypt x2 ∈ Zm as in [GKV10], using a variant of the dual-Regev encryption scheme
(recalled in Section 3.1.3): the resulting ciphertext is c0 = B0 · s + x2, where B0 ∈ Zm×nq is a
public matrix and s is uniform in Znq . Then, for each i ∈ {1, . . . , `}, we also compute a proper
dual-Regev encryption ci of id[i] · x2 and generate a non-interactive OR proof that ci encrypts
either the same vector as c0 or the 0 vector.

It remains to prove that the encrypted vectors x2 are part of a signature satisfying Eq. (7.1)
without giving away the id[i]’s. To this end, we choose the signing matrices Ai orthogonally to the
encrypting matrices Bi, as suggested in [GKV10]. Contrarily to the case of [GKV10], the latter
technique does not by itself suffice to guarantee the well-formedness of the ci’s. Indeed, we also
need to prove properties about the noise vectors used in the dual-Regev ciphertexts {ci}`i=1. This
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is achieved using a modification of Lyubashevsky’s protocol [Lyu08, Lyu12] to prove knowledge
of a solution to the Inhomogeneous Short Integer Solution problem (ISIS) (defined in Section 2.1).
This modification leads to a Σ-protocol which is zero-knowledge when the transcript is conditioned
on the protocol not aborting. As the challenge space of this Σ-protocol is binary, we lowered the
abort probability so that we can efficiently apply the Fiat-Shamir heuristic [FS86] to a parallel
repetition of the basic protocol. In the traceability proof, the existence of a witness extractor
will guarantee that a successful forger will either yield a forgery for Boyen’s signature or a short
non-zero vector in the kernel of one of the matrices {Ai}`i=1. In either case, the forger allows the
simulator to solve a SIS instance.

In the fully anonymous variant of our scheme, the difficulty is to find a way to open adversarially-
chosen signatures. This is achieved by implicitly using a “chosen-ciphertext-secure” variant of
the signature encryption technique of Gordon et al. [GKV10]. While Camenisch et al. [CNR12]
proceed in a similar way using Peikert’s technique [Pei09], we use a much more economical method
borrowed from the Agrawal et al. [ABB10a] identity-based cryptosystem. In our basic system,
each ci is of the form Bi · s + p · ei + id[i] · x2, where p is an upper bound on x2’s coordinates,
and can be decrypted using a short basis Si such that Si ·Bi = 0 mod q. Our fully anonymous
system replaces each Bi by a matrix Bi,VK that depends on the verification key VK of a one-time
signature. In the proof of full anonymity, the reduction will be able to compute a trapdoor for all
matrices Bi,VK, except for one specific verification key VK? that will be used in the challenge phase.
This will provide the reduction with a backdoor allowing it to open all adversarially-generated
signatures.

7.1 An Asymptotically Shorter Lattice-Based Group Signature

At a high level, our key generation is based on the variant of Boyen’s lattice signatures described
in Section 3.2.5: Boyen’s secret and verification keys respectively become our secret and public
keys, whereas Boyen’s message space is mapped to the users’ identity space. There are however
several additional twists in Keygen. First, each group member is given a full short basis of the
public lattice associated to its identity, instead of a single short lattice vector. The reason is that,
for anonymity and unlinkability purposes, the user has to generate each group signature using a
fresh short lattice vector. Second, we sample our public key matrices (Ai)i≤` orthogonally to
publicly known matrices Bi, similarly to the group signature scheme from [GKV10]. These Bi’s
will be used to publicly verify the validity of the signatures. They are sampled along with short
trapdoor bases, using algorithm SuperSamp (see Lemma 3.12), which become part of the group
signature secret key. These trapdoor bases will be used by the group authority to open signatures.

To anonymously sign M , the user samples a Boyen signature (x1,x2) with its identity as
message, which is a temporary certificate of its group membership. It does so using its full
trapdoor matrix for the corresponding lattice. The user then encrypts x2, in a fashion that
resembles [GKV10], using Regev’s dual encryption scheme from [GPV08, Se. 7.1] with the Bi’s
as encryption public keys. Note that in all cases but one (c0 at Step 2), the signature is not
embedded in the encryption noise as in [GKV10], but as proper plaintext. The rest of the signing
procedure consists in proving in zero-knowledge that these are valid ciphertexts and that the
underlying plaintexts indeed encode a Boyen signature under the group public key. These ZKPoKs
are all based on the interactive proof systems recalled in Sections 6.2.2 and 6.2.3. These was made
non-interactive via the Fiat-Shamir heuristic with random oracle H(·) taking values in {0, 1}λ,
with λ = Θ(n). The message M is embedded in the application of the Fiat-Shamir transform at
Step 6 of the signing algorithm.

The verification algorithm merely consists in verifying all proofs of knowledge concerning the
Boyen signature embedded in the plaintexts of the ciphertexts.
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Finally, the group manager can open any signature by decrypting the ciphertexts (using
the group manager secret key) and then recovering the underlying Boyen signature within the
plaintexts: this reveals which public key matrices Ai have been considered by the signer, and
therefore its identity.

The scheme depends on several functions m, q, p, α and σ of the security parameter n and the
group size N(=2`). They are set so that all algorithms can be implemented in polynomial time
and are correct (Theorem 7.2), and so that the security properties (Theorems 7.3 and 7.8) hold, in
the ROM, under the SIS and LWE hardness assumptions for parameters for which these problems
enjoy reductions from standard worst-case lattice problems with polynomial approximation factors.
More precisely, we require that:
• parameter m is Ω(n log q),
• parameter σ is Ω(m3/2√`n log q logm) and ≤ nO(1),
• parameter p is Ω((αq + σ)m3/2n),
• parameter α is set so that α−1 ≥ Ω(pm3 logm) and ≤ nO(1),
• parameter q is prime and Ω(`+ α−1

√
n`) and ≤ nO(1).

For example, we may set m = Õ(n), σ = Õ(n2
√
`), p = Õ(n9/2

√
`) as well as α−1 =

Õ(n15/2
√
`) and q = Õ(`+ n8

√
`). The scheme is described in Figures 7.1 and 7.2.

Keygen(1n, 1N ): Given a security parameter n > 0 and the desired number of group members
N = 2` ∈ poly(n), choose parameters q, m, p, α and σ as specified above and make them
public. Choose a hash function H : {0, 1}∗ → {0, 1}t, for some t = Θ(n), which will be
modelled as a random oracle in the security proof. Then, proceed as follows.
1. Run TrapGen(1n, 1m, q) (defined in Lemma 3.7) to get A ∈ Zm×nq and a short basis TA

of Λ⊥q (A).
2. For i = 0 to `, sample Ai ←↩ U(Zm×nq ) and compute (Bi,S

′
i) ← SuperSamp(Ai, 0n×n)

(defined in Lemma 3.12). Then, randomize S′i as Si ← RandBasis(S′i,Ω(
√
mn log q logm))

(defined in Lemma 3.10).2

3. For j = 0 to N − 1, let idj = idj [1] . . . idj [`] ∈ {0, 1}` be the binary representation of idj
and define:

Aidj =
[

A
A0 +

∑`
i=1 idj [i]Ai

]
∈ Z2m×n

q .

Then, run T′idj ← ExtBasis(Aidj ,TA) to get a short delegated basis T′idj of Λ⊥q (Aidj ).
Finally, run Tidj ← RandBasis(T′idj ,Ω(m

√
`n log q logm)).2 The j-th member’s private

key is gsk[j] := Tidj .
4. The group manager’s private key is gmsk := {Si}`i=0 and the group public key is defined

to be gpk :=
(
A, {Ai,Bi}`i=0

)
. The algorithm outputs

(
gpk, gmsk, {gsk[j]}N−1

j=0
)
.

Figure 7.1: Our group signature scheme: KeyGen.

Remark 7.1. The disjunction of two relations that can be proved by Σ-protocols can also be
proved by a Σ-protocol [CDS94, Dam10].

All steps of the scheme above can be implemented in polynomial-time as a function of the
security parameter n, assuming that q ≥ 2 is prime, m ≥ Ω(n log q), σ ≥ Ω(m3/2√`n log q logm)
(using Lemmas 1.24 and 3.10), and αq ≥ Ω(1) (using Lemma 1.24). Under some mild conditions
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Sign(gpk, gsk[j],M): To sign a message M ∈ {0, 1}∗ using the private key gsk[j] = Tidj , proceed
as follows.

1. Run GPVSample(Tidj , σ) to get (x1‖x2) ∈ Λ⊥q (Aidj ) of norm ≤ σ
√

2m.
2. Sample s0 ←↩ U(Znq ) and encrypt x2 ∈ Zmq as c0 = B0 · s0 + x2 ∈ Zmq .
3. Sample s←↩ U(Znq ). For i = 1 to `, sample ei ←↩ DZm,αq and compute ci = Bi · s + p ·

ei + idj [i] · x2, which encrypts x2 ∈ Zmq (resp. 0) if idj [i] = 1 (resp. idj [i] = 0).

4. Generate a NIZKPoK π0 of s0 so that (B0, c0,
√

2σ/q; s0) ∈ RLWE (see Section 6.2.2).
5. For i = 1 to `, generate a NIZKPoK πOR,i of s and s0 so that either:
(i) ((Bi|B0), p−1(ci − c0),

√
2α; (s‖ − s0)) ∈ RLWE (the vectors ci and c0 encrypt the

same x2, so that p−1(ci − c0) is close to the Zq-span of (Bi|B0));
(ii) or (Bi, p

−1ci, α; s) ∈ RLWE (the vector ci encrypts 0, so that p−1ci is close to the Zq-
span of Bi).

This can be achieved by OR-ing two proofs for RLWE, and making the resulting protocol
non-interactive with the Fiat-Shamir heuristic (see Remark 7.1).

6. For i = 1 to `, set yi = idj [i]x2 ∈ Zm and generate a NIZKPoK πK of {ei}`i=0, {yi}`i=0,x1
such that,

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
pAi

)
(7.2)

eTi
(
pAi

)
+ yTi Ai = cTi Ai, for i ∈ {1, . . . , `} (7.3)

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ max(σ, αq)
√
m for all i.

This is achieved using ProveISIS in order to produce a triple (CommK ,ChallK ,RespK),
where ChallK = H(M,CommK , {ci}`i=0, π0, {πOR,i}`i=1).

The signature consists of

Σ =
(
{ci}`i=0, π0, {πOR,i}`i=1, πK

)
. (7.4)

Verify(gpk,M,Σ): Parse Σ as in (7.4). Then, return 1 if π0, {πOR,i}`i=1, πK properly verify. Else,
return 0.

Open(gpk, gmsk,M,Σ): Parse gmsk as {Si}`i=0 and Σ as in (7.4). Compute x2 by decrypting c0
using S0. For i = 1 to `, use Si to determine which one of the vectors p−1ci and p−1(ci−x2)
is close to the Zq-span of Bi. Set id[i] = 0 in the former case and id[i] = 1 in the latter.
Eventually, output id = id[1] . . . id[`].

Figure 7.2: Sign, Verify and Open.
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on the parameters, the scheme above is correct, i.e., the verifier accepts honestly generated
signatures, and the group manager successfully opens honestly generated signatures. In particular,
multiplying the ciphertexts by the Si modulo q should reveal p · ei + idj [i] · x2 over the integers,
and ‖idj [i] · x2‖∞ should be smaller than p.

Theorem 7.2. Let us assume that q ≥ 2 is prime and that we have m ≥ Ω(n log q), σ ≥
Ω(m3/2√`n log q logm), α−1 ≥ Ω(pm5/2 logm

√
n log q) as well as q ≥ Ω(α−1+σm5/2 logm

√
n log q).

Then, the group signature scheme above can be implemented in time polynomial in n, is correct,
and the bit-size of the generated signatures in O(`nm log q).

Proof. Setting m = Ω(n log q) allows us to use algorithms TrapGen and SuperSamp from Lem-
mas 3.7 and 3.12, at Steps 1 and 2 of algorithm Keygen. Also, the rows of the matrix A sampled
at Step 1 span Znq with probability ≥ 1− 2−Ω(n). At Steps 2 and 3, the second inputs to the calls
to RandBasis are sufficiently large for the assumption of Lemma 3.10 to hold (note that in the
second case, it is much larger than needed, but this choice is important for the simulation in the
traceability proof). At the end of the execution of Keygen, we have ‖S̃i‖ ≤ O(m logm

√
n log q)

for all i ∈ {0, . . . , `} and ‖T̃idj‖ ≤ O(m3/2√`n log q logm) for all j ∈ {0, . . . , N − 1}.
At Step 1 of algorithm Sign, the parameter σ is sufficiently large for applying Lemma 1.24

and obtain a distribution within statistical distance 2−Ω(n) from DΛ⊥q (Aidj ),σ. The same holds for
all ei’s of Step 3.

Correctness of algorithm Verify follows from the completeness property of the underlying
proof systems. Now, consider algorithm Open. We have S0 · c0 = S0 · x2 mod q. But on the
other hand ‖S0 · x2‖ ≤

√
m‖S0‖‖x2‖ ≤ m‖S̃0‖‖x2‖, which is itself O(σm3/2n logm

√
n log q)

with probability ≥ 1− 2−Ω(n), by Lemma 1.36. As q has been set sufficiently large, we obtain
that S0 · x2 is known over the integers: Multiplying by S−1

0 over the rationals allows the group
manager to recover x2. The argument is similar for the other ci’s, except that ‖Si · ci mod q‖ ≤
O(pαqm3/2n logm

√
n log q). Again, α has been set sufficiently small to allow the group manager

to recover p · ei + idj [i] · x2.
Finally, the total bit-size of all proofs is O(`nm log q). The same bound holds for the

ciphertexts.

7.2 Security

We now focus on the security of the scheme described in Section 7.1.

7.2.1 Anonymity
Like in [GKV10, BBS04], we use a relaxation of the anonymity definition, called weak anonymity
and recalled in Definition 6.7. Analogously to the notion of IND-CPA security for public-key
encryption, the adversary does not have access to a signature opening oracle. We show that the
two versions (for b = 0, 1) of the anonymity security experiment recalled in Section 6.3.2 are
indistinguishable under the LWE assumption. We use several intermediate hybrid experiments
called G(i)

b , and show that each of these experiments is indistinguishable from the next one. At
each step, we only change one element of the game (highlighted by an arrow in Figure 7.3), to
finally reach the experiment G(4) where the signature scheme does not depend on the identity of
the user anymore.

Theorem 7.3. In the random oracle model, the scheme provides weak anonymity in the sense of
Definition 6.7 under the LWEq,α assumption. Namely, for any PPT adversary A with advantage ε,
there exists an algorithm B solving the LWEq,α problem with advantage at most 2−Ω(n) smaller.
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Proof. We define by G0 the experiment of Definition 6.7 with b = 0 and by G1 the same experiment
with b = 1. To show the anonymity of the scheme, we prove that G0 and G1 are indistinguishable.
We use several hybrid experiments named G(1)

b , G(2)
b , G(3)

b and G(4) (described in Figure 7.3),
where b is either 0 or 1.

Lemma 7.4. For each b ∈ {0, 1}, Gb and G(1)
b are statistically indistinguishable.

We only change the way we generate (x1‖x2), by using the fact that one way to generate it is to
first sample x2 from DZm,σ and then generate x1 from DZm,σ such that (x1‖x2)T ·Aidjb = 0 mod q
(by using the trapdoor TA). This change is purely conceptual and the vector (x1‖x2) has the
same distribution anyway. The two experiments are thus identical from A’s view and x2 is chosen
independently of the signer’s identity in the challenge phase.

Lemma 7.5. For each b ∈ {0, 1}, G(1)
b and G(2)

b are statistically indistinguishable.

The differences are simply: Instead of generating the proofs {πOR,i}`i=1 and πK using the
witnesses, we simulate them (see Section 6.2.2).

Lemma 7.6. For each b ∈ {0, 1}, if the LWEq,α problem is hard, then the experiments G(2)
b and

G
(3)
b are computationally indistinguishable.

Proof. This proof uses the same principle as the proof of [GKV10, Claim 1]: We use the adversary
A to construct a PPT algorithm B for the LWEq,α problem. We consider an LWE instance
(B′, z) ∈ Zm`×(n+1)

q such that B′ = (B′1, . . . ,B′`) and z = (z1, . . . , z`) with B′i ∈ Zm×nq and
zi ∈ Zmq . The component z is either uniform in Zm`q , or of the form z = B′ · s + e where e is
sampled from DZm`,αq and s←↩ U(Zn+1

q ).
We construct a modified Keygen algorithm using this LWE instance: It generates the matrix A

with a basis TA of Λ⊥q (A). Instead of generating the Bi’s genuinely, we pick B0 uniformly in Zm×nq

and set Bi = B′i for 1 ≤ i ≤ `. For 0 ≤ i ≤ `, we compute (Ai,Ti)← SuperSamp(Bi,0). Then,
for each 1 ≤ j ≤ N−1, we defineAidj as in the original Keygen algorithm, and compute a trapdoor
Tidj using TA. The adversary A is given gpk and {gskj}j . In the challenge phase, it outputs
j0, j1 and a message M . By [GKV10], this Keygen algorithm and the one in all the experiments
are statistically indistinguishable. Then, the signature is created on behalf of the group member
jb. Namely, B first chooses x2 ← DZm,σ and finds x1 such that (x1‖x2)T ·Aidjb = 0 mod q.
Then it chooses s0 ←↩ U(Znq ) and computes c0 = B0 · s0 + x2 ∈ Zmq . Third, it computes
ci = p · zi + idjb [i] · x2 (with the zi of the LWE instance). Then it generates π0 and simulates the
πOR,i’s and πK proofs.

We let DLWE denote this experiment when z = B′ · s+ e: This experiment is statistically close
to G(2)

b . Then, we let Drand denote this experiment when z is uniform: It is statistically close to
G(3)
b . As a consequence, if the adversary A can distinguish between the experiments G(2)

b and
G(3)
b with some advantage, then we can solve the LWEq,α problem with advantage at most 2−Ω(n)

smaller.

Lemma 7.7. For each b ∈ {0, 1}, G(3)
b and G(4) are indistinguishable.

Between these two experiments, we change the first and third steps. In the former, we no
longer generate x1 and, in the latter, ci is uniformly sampled in Zmq . These changes are purely
conceptual. Indeed, in experiment G(3)

b , the vector x1 is not used beyond Step 1. In the same
experiment, we also have ci = zi + idjb [i]. Since the zi’s are uniformly sampled in Zmq , the ci’s
are also uniformly distributed in Zmq . As a consequence, the ci’s of G(3)

b and the ci’s of G(4) have
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Experiment Gb

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk =
{Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. (x1‖x2)← GPVSample(Tidjb
, σ);

we have (x1‖x2)T ·Aidjb
= 0 mod q.

2. Choose s0 ←↩ U(Znq ), compute c0 = B0 · s0 + x2 ∈
Zmq .

3. Choose s ←↩ U(Znq ), and for i = 1 to `, choose
ei ←↩ DZm,αq and compute ci = Bi · s + p ·ei +
idjb [i] · x2.

4. Generate π0.
5. Generate {πOR,i}i.
6. Generate πK .

Experiment G(2)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk =
{Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. Sample x2 ←↩ DZm,σ; sample x1 ←↩ DZm,σ, con-
ditioned on (x1‖x2)T ·Aidjb

= 0 mod q.

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 · s0 +
x2 ∈ Zmq ,

3. Choose s ←↩ U(Znq ), and for i = 1 to `, choose
ei ←↩ DZm,αq and compute ci = Bi · s + p ·ei +
idjb [i] · x2.

4. Generate π0.
→ 5. Simulate {πOR,i}i.
→ 6. Simulate πK .

Experiment G(1)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk =
{Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

→ 1. Sample x2 ←↩ DZm,σ and, using TA, sample
x1 ←↩ DZm,σ conditioned on (x1‖x2)T ·Aidjb

=
0 mod q.

2. Choose s0 ←↩ U(Znq ), compute c0 = B0 · s0 + x2 ∈
Zmq ,

3. Choose s ←↩ U(Znq ), and for i = 1 to `, choose
ei ←↩ DZm,αq and compute ci = Bi · s + p ·ei +
idjb [i] · x2.

4. Generate π0.
5. Generate {πOR,i}i.
6. Generate πK .

Experiment G(3)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk =
{Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. Sample x2 ←↩ DZm,σ Sample x1 ←↩ DZm,σ condi-
tioned on (x1‖x2)T ·Aidjb

= 0 mod q.

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 · s0 +
x2 ∈ Zmq ,

→ 3. For i = 1 to `, choose zi ←↩ U(Zmq ) and com-
pute ci = zi + idjb [i] · x2.

4. Generate π0.
5. Simulate {πOR,i}i.
6. Simulate πK .

Experiment G(4)

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk =
{Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:
→ 1. Sample x2 ←↩ DZm,σ .

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 ·s0 +x2 ∈
Zmq ,

→ 3. For i = 1 to `, choose zi ←↩ U(Zmq ) and set
ci = zi.

4. Generate π0.

5. Simulate {πOR,i}i.

6. Simulate πK .

Figure 7.3: Experiments Gb, G(1)
b , G(2)

b ,G(3)
b and G(4).
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the same distribution. In G(4)
b , we conclude that A’s view is exactly the same as in experiments

G
(3)
b .

Since the experiment G(4) no longer depends on the bit b ∈ {0, 1} that determines the signer’s
identity, the announced result follows.

7.2.2 Traceability
The proof of traceability relies on the technique of [ABB10a, Boy10] and a refinement from [HW09,
MP12], which is used in order to allow for a smaller modulus q.

A difference with the proof of [GKV10] is that we need to rely on the knowledge extractor of a
proof of knowledge πK . We distinguish two cases, depending on whether the extracted witnesses
{ei,yi}`i=1 of relation (7.3) satisfy yi = idj [i]x2 for all i or not. The strategy of the reduction
and the way it uses its given SISm,q,β instance will depend on which case is expected to occur.

Theorem 7.8. Assume that q > logN , m ≥ Ω(n log q), p ≥ Ω((αq + σ)m3/2n) and β ≥
Ω(σm5/2n

√
logN + pαqm3/2n). Then for any PPT traceability adversary A with success probabil-

ity ε, there exists a PPT algorithm B solving SISm,q,β with probability ε′′ ≥ ε′

2N ·(
ε′

qH
−2−λ)+ ε′

2 logN ,
where ε′ = ε− 2−λ − 2−Ω(n) and qH is the number of queries to the random oracle H : {0, 1}∗ →
{0, 1}λ.

Proof. Let A be a PPT adversary that can defeat the traceability of the scheme with non-
negligible success probability ε in the game of Definition 6.8. We construct a PPT algorithm B
that emulates A’s challenger and attacks SISm,q,β : It takes as input Ā ∈ Zm×nq with the task of
finding v ∈ Λ⊥q (Ā) with 0 < ‖v‖ ≤ β.
Initialization. Before starting its interaction with A, algorithm B samples coin←↩ U({0, 1}). It
also samples j? ←↩ U({0, . . . , N − 1}), a guess that A’s forgery will open to user j?. Depending
on coin, the group public key is prepared in two different ways.
• If coin = 0, algorithm B first calls TrapGen(1n, 1m, q) to obtain C ∈ Zm×nq and a basis TC

of Λ⊥q (C) with ‖T̃C‖ ≤ O(
√
n log q). Then, it samples `+1 matricesQk ∈ Zm×m, with each matrix

entry sampled independently from DZ,
√
m (as in [Boy10, Th. 25], with a larger standard deviation

to get exponentially small statistical distances later on).. Let idj? = idj? [1] . . . idj? [`] ∈ {0, 1}`
denote the binary expansion of idj? . The reduction B defines the matrices {Ai}`i=0 as{

A0 = Q0 · Ā + (
∑`
i=1 idj? [i]) ·C

Ai = Qi · Ā + (−1)idj? [i] ·C, for i ∈ {1, . . . , `}.

It also sets A = Ā. Next, it runs SuperSamp(Ai,0) to obtain Bi ∈ Zm×nq along with short bases
S′i of Λ⊥q (Bi), and then computes Si ← RandBasis(S′i,Ω(

√
mn log q logm)), as in Step 2 of the

genuine key generation algorithm. The group public key gpk =
(
A, {Ai,Bi}`i=0

)
is finally given

to A.
We note that, for each j 6= j?, we have Aidj equals to[

Ā
A0 +

∑`
i=1 idj [i]Ai

]
=

[
Ā

(Q0 +
∑`
i=1 idj [i]Qi) · Ā + (

∑`
i=1 idj? [i] + (−1)idj? [i]idj [i]) ·C

]
=

[
Ā

(Q0 +
∑`
i=1 idj [i]Qi) · Ā + hidj ·C

]
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where hidj ∈ {1, . . . , `} stands for the Hamming distance between the identifiers idj and idj? .
Since q > `, we have hidj 6= 0 mod q whenever idj 6= idj? , so that algorithm B is able to
compute (see [ABB10a, Se. 4.2], using the basis TC of Λ⊥q (C) and the refined GPVSample
of Lemma 1.24) a basis T′idj of Λ⊥q (Aidj ) with ‖T̃′idj‖ ≤ Ω(m

√
`n log q). Then algorithm B

runs Tidj ← RandBasis(T′idj ,Ω(m
√
`n log q logm)). Algorithm B is thus able to compute a

trapdoor Tidj for each j 6= j?. In contrast, algorithm B lacks a trapdoor for Aidj? as the latter
only depends on A and {Qk}`k=0.

Observe that since the rows of the Qk’s are sampled from DZm,
√
m, the matrices A,A0, . . . ,A`

are within statistical distance 2−Ω(m) of U(Zm×nq ) (this is a consequence of [GPV08, Le. 5.2]).
Further, by Lemma 3.10, the distribution of the Tidj ’s generated by B is statistically close to
that of the real scheme.
• If coin = 1, algorithm B samples i? ←↩ U({1, . . . , `}) and embeds its SISm,q,β instance in
the matrix Ai? that will be part of gpk. It calls TrapGen(1n, 1m, q) to obtain A ∈ Zm×nq

and a basis TA of Λ⊥q (A) with ‖T̃A‖ ≤ O(
√
n log q). Next, it independently samples Aj

←↩ U(Zm×nq ) for j 6= i? ∈ {0, . . . , `} and defines Ai? = Ā. Then, algorithm B computes
(Bi,S

′
i)← SuperSamp(Ai,0) and Si ← RandBasis(S′i,Ω(

√
mn log q logm)), as in Step 2 of Keygen.

The group public key gpk =
(
A, {Ai,Bi}`i=0

)
, which is distributed as in the real scheme, is given

to the adversary A. Since it knows TA, algorithm B is able to sample a trapdoor Tidj for all
users, with exactly the same distribution as in the real scheme.

In either case, B runs the adversary A on inputs gpk =
(
A, {Ai,Bi}`i=0

)
and gmsk = {Si}`i=0.

Queries. Algorithm B then starts interacting with A and handles A’s queries depending on coin.

• If coin = 0, it aborts in the event that A queries the unavailable secret key gsk[j?]. When A
queries a secret key gsk[j] for j 6= j?, algorithm B reveals the short basis Tidj that was computed in
the initialization phase. When it comes to answer signing queries, algorithm B faithfully runs the
signing algorithm whenever the involved user j differs from j?. As for signing queries involving the
expected target user j?, the reduction B samples s0, s←↩ U(Znq ), x2 ←↩ DZm,σ and ei ←↩ DZm,αq
for each i ∈ {1, . . . , `}. It then computes c0 = B0 · s0 +x2 as well as ci = Bi · s+ p · ei + idj? [i]x2
for each i ∈ {1, . . . , `}. The proof π0 is then generated using the actual witness x2 whereas the
other non-interactive proofs {πOR,i}`i=1 and πK are simulated (exactly as in experiment G(2)

b

in the proof of anonymity). By the statistical zero-knowledge property of the simulator, the
signature Σ will be statistically indistinguishable from a genuine signature.
• If coin = 1, algorithm B knows TA and can answer A’s queries by running the real signing
algorithm or returning the queried secret keys gsk[j] (all of which are available).

Regardless of the value of coin, queries to the random oracle H are handled by returning a
uniformly chosen value in {0, 1}λ. For each κ ≤ qH , we let rκ denote the answer to the κ-th
H-query. Of course, if the adversary makes a given query more than once, then B consistently
returns the previously defined value.

Forgery. When A terminates, it outputs a signature Σ? =
(
{c?i }`i=0, π

?
0 , {π?OR,i}`i=1, π

?
K

)
on

some message M? with probability ≥ ε − 2−Ω(n). If we parse π?K as (Comm?
K ,Chall?K ,Resp?K),

with overwhelming probability, the adversary A must have queried H on the following input:
(M?,Comm?

K , {c?i }`i=0, π
?
0 , {π?OR,i}`i=1). Indeed, otherwise, the probability to have the equality

Chall?K = H(M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=1) is at most 2−λ. With probability ≥ ε′ :=

ε− 2−λ − 2−Ω(n), the tuple (M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=1) thus coincides with the κ?-th

hash query for some κ? ≤ qH .
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At this stage, the reduction B runs a second execution of the adversary A with the same
random tape and input as in the original execution. All queries are answered as previously
with only one difference in the treatment of random oracle queries. Namely, the first κ? − 1
hash queries – which are identical to those of the first execution since A is run with the same
random tape as before – receive the same answers r1, . . . , rκ?−1 as in the initial run. This
implies that the κ?-th query will involve the tuple (M?,Comm?

K , {c?i }`i=0, π
?
0 , {π?OR,i}`i=1) as in

the first execution. However, from the κ?-th query onwards, A obtains fresh random oracle
values r′κ? , . . . , r′qH which depart from the sequence of answers in the first execution. The General
Forking Lemma of [BN06] implies that, with probability ≥ ε′(ε′/qH − 2−λ), A’s forgery also
involves (M?,Comm?

K , {c?i }`i=0, π
?
0 , {π?OR,i}`i=1) in the second run and we also have r′κ? 6= rκ? . In

this case, using Extract, algorithm B can obtain vectors e1, . . . , e`,x1,y1, . . . ,y` ∈ Zm satisfying

xT1 A+
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi (pAi) and eTi
(
pAi

)
+yTi Ai = cTi Ai for i ∈ {1, . . . , `} (7.5)

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ O((αq + σ)m3/2n) for all i ∈ {1, . . . , `} (see Section 6.2.2).
The reduction B then opens one of the two forgeries using {Si}`i=0 (note that both signatures

necessarily open to the same identity id). At this point, B aborts and reports failure if the opening
algorithm does not point to user j?. However, with probability ≥ 1/N , B’s initial choice for j?
turns out to be correct and the opening algorithm reveals idj? .

We now assume that Σ? indeed traces to user j?. We let x2 ∈ Zm denote the vector obtained
by decrypting c?0 using S0. Algorithm B considers the following two situations:
• If yi = idj? [i]x2 for all i ∈ {1, . . . , `}, then B aborts if coin = 1 and continues if coin = 0. The
relations (7.5) and the fact that c?0 is of the form c?0 = B0 ·s0 +x2 mod q with BT

0 ·A0 = 0 mod q
imply that (modulo q):

0 = xT1 A + c?0
TA0 +

∑̀
i=1

idj? [i]xT2 ·Ai = (x1‖x2)T ·
[

A
A0 +

∑`
i=1 idj? [i]Ai

]
= (x1‖x2)T ·

[
Ā

(Q0 +
∑`
i=1 idj? [i]Qi) · Ā

]
,

by construction of the matricesA,A0, . . . ,A`. It comes that vT = xT1 +xT2 ·
(
Q0+

∑`
i=1 idj? [i]Qi

)
∈

Λ⊥(Ā). The same analysis as in [Boy10] shows that 0 < ‖v‖ ≤ O((αq + σ)m5/2n
√
`) holds with

probability 1− 2−Ω(m).
• If there exists i ∈ {1, . . . , `} such that yi 6= idj? [i]x2, then B aborts if coin = 0 and continues
if coin = 1. The non-interactive proofs π0 and πOR,i imply that ci = Bi ·s+pe′i+idj? [i]x2 mod q
for some s0, s ∈ Znq and x2, e′i ∈ Zm such that ‖x2‖ ≤ O(σm3/2n) and ‖e′i‖ ≤ O(αqm3/2n). If
we multiply cTi by Ai, we find

cTi Ai = pe′i
T ·Ai + idj? [i]xT2 ·Ai.

By subtracting the latter equation from the second equation of (7.5), we find (still modulo q):(
p(eTi − e′i

T ) + (yTi − idj? [i]xT2 )
)
·Ai = 0.

If p(ei−e′i)+(yi− idj? [i]x2) 6= 0, it is a non-zero vector in Λ⊥(Ai) of norm ≤ O((σ+pαq)m3/2n).
Given that we have Ai = Ā with probability 1/`, then i = i?, we solved the given SIS instance
with the same probability. Finally, if p(ei − e′i) + (yi − idj? [i]x2) = 0, the relative norms of the
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vectors ei, e′i,yi,x2 with respect to p imply ei = e′i and yi = idj? [i]x2 (over the integers), which
is in contradiction with yi 6= idj? [i]x2.

The lower bound on B’s advantage is obtained by combining the probability of obtaining a
successful forking, the fact that B’s choice for j? ∈ U({0, . . . , N − 1}) is independent of A’s view
when coin = 0 and the observation that B’s choice for coin is also independent of A’s view.

7.3 A variant with full (CCA-)anonymity

7.3.1 Description
We modify our basic group signature scheme to reach the strongest anonymity level (Definition 6.7),
in which the attacker is authorized to query an opening oracle. This implies the simulation of an
oracle which opens adversarially-chosen signatures in the proof of anonymity. To this end, we
replace each Bi from our previous scheme by a matrix Bi,VK that depends on the verification
key VK of a strongly unforgeable one-time signature. The reduction will be able to compute a
trapdoor for all these matrices, except for one specific verification key VK? that will be used
in the challenge phase. This will provide the reduction with a backdoor allowing it to open all
adversarially-generated signatures.

It is assumed that the one-time verification keys VK belong to Znq (note that this condition
can always be enforced by hashing VK). Following Agrawal et al. [ABB10a], we rely on a full-rank
difference function Hvk : Znq → Zn×nq such that, for any two distinct u,v ∈ Znq , the difference
Hvk(u)−Hvk(v) is a full rank matrix.

The scheme is described in Figures 7.4 and 7.5. In the rest of the section we prove the following
theorems.

7.3.2 Full anonymity
Theorem 7.9. In the random oracle model, the scheme provides full anonymity in the ROM if
the LWEq,α assumption holds and if the one-time signature is strongly unforgeable.

We now prove the full anonymity of the scheme in an attack game which is exactly the
one of Definition 6.7 with the difference that the adversary is granted access to a signature
opening oracle. Namely, before and after the challenge phase, the latter oracle can be invoked for
adversarially-chosen signatures as long as these do not coincide with the challenge signature Σ?.
The proof of Theorem 7.9 relies on the all-but-one simulation technique [BB04] in the same way
as in the Agrawal-Boneh-Boyen IBE [ABB10a].

Proof. Like the proof of Theorem 7.3, the proof proceeds via a sequence of hybrid experiments.
For each i, we define Wi to be the event that experiment G(b)

i outputs 1.
Experiment G(b)

0 . This experiment if the real attack game. Namely, the challenger performs
the setup of the system by following the specification of the Keygen algorithm. The adversary
A is given gpk and {gsk[j]}N−1

j=0 at the beginning of the game. All opening queries are answered
faithfully, by returning the uncovered identity id ∈ {0, 1}`. At the challenge phase, the adversary
chooses a message M as well as indexes j0, j1 ∈ {0, . . . , N − 1} and obtains a challenge Σ? =(
VK?, {c?i }`i=0, π

?
0 , {π?OR,i}`i=1π

?
K , sig

?
)
← Sign(gpk, gsk[jb],M). The experiment ends with the

adversary A outputting a bit b′ ∈ {0, 1}. At this point, the experiment returns 1 if b′ = b and 0
otherwise. The probability Pr[W0] is thus the probability to have b′ = b.

Experiment G(b)
1 . We make a simple conceptual change to the generation of the challenge

signature Σ?. Namely, instead of sampling (x1‖x2) ∈ Z3m in Λ⊥(Aid), Experiment G(b)
1 first
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Keygen(1n, 1N ): Given a security parameter n > 0 and the desired number of members N = 2` ∈
poly(n), choose parameters q,m, p, α, σ as in Section 7.1 and make them public. Choose a
hash function H : {0, 1}∗ → {0, 1}t for some t = Θ(n), that will be modelled as a random
oracle, and a one-time signature Πots = (G,S,V) (Section 6.1.1). Then, proceed as follows.
1. Run TrapGen(1n, 1m, q) to get A ∈ Zm×nq and a short basis TA of Λ⊥q (A).
2. For i = 0 to `, repeat the following steps.
a. Choose uniformly random matrices Ai,1,Bi,0,Bi,1 ∈ Zm×nq .
b. Sample Ai,2 uniformly such that BT

i,1 ·Ai,2 = 0 mod q. Define

Ai =
[
Ai,1
Ai,2

]
∈ Z2m×n

q .

c. Run (Bi,−1,S′i)← SuperSamp(Ai,1,−A
T
i,2 ·Bi,0) to obtain Bi,−1 ∈ Zm×nq such that

BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q.
d. Compute a re-randomized trapdoor Si ← RandBasis(S′i,Ω(

√
mn log q logm))3 for Bi,−1.

For any string VK, if the matrix Hvk(VK) is used to define

Bi,VK =
[

Bi,−1
Bi,0 + Bi,1Hvk(VK)

]
∈ Z2m×n

q ,

we have BT
i,VK ·Ai = 0 mod q for all i.

3. For j = 0 to N − 1, let idj = idj [1] . . . idj [`] ∈ {0, 1}` be the binary representation of idj
and define:

Aidj =
[

A
A0 +

∑`
i=1 idj [i]Ai

]
∈ Z3m×n

q .

Then run T′idj ← ExtBasis(TA,Aidj ) to get a short delegated basis T′idj of Λ⊥q (Aidj ).
Finally, run Tidj ← RandBasis(T′idj ,Ω(m

√
`n log q logm)) and define gsk[j] := Tidj .

4. Finally, define gpk :=
(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0, Πots) and gmsk := {Si}`i=0. The

algorithm outputs
(
gpk, gmsk, {gsk[j]}N−1

j=0
)
.

Figure 7.4: KeyGen.

samples x2 ←↩ DZ2m,σ and uses the trapdoor TA to compute x1 ∈ DZm,σ such that (x1‖x2)T ·
Aid = 0 mod q. This change is purely conceptual since the vector (x1‖x2) has the same distribution
either way. Clearly, it holds that Pr[W1] = Pr[W2].
Experiment G(b)

2 . We introduce a slight modification w.r.t. Experiment G(b)
1 . At the outset

of the game, the challenger generates a one-time signature key pair (VK?,SK?)← G(1n). If A
queries the opening oracle with a valid signature Σ =

(
VK, {ci}`i=0, π0, {πOR,i}`i=1πK , sig

)
such

that VK = VK?, the experiment halts and outputs a random bit. The assumed strong security
of the one-time signature implies that Experiment G(b)

2 cannot depart from Experiment G(b)
1 .

Indeed, if a valid opening query is made after the challenge phase, the adversary is able to break
the strong unforgeability of the one-time signature (the proof is straightforward and omitted).
Moreover, before the challenge phase, the one-time verification key VK? is independent of A’s view.
As long as no one-time verification key is produced by the one-time key generation algorithm
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Sign(gpk, gsk[j],M): To sign a message M ∈ {0, 1}∗ using the private key gsk[j] = Tidj , generate
a one-time signature key pair (VK,SK)← G(1n) for Πots and proceed as follows.

1. Run GPVSample(Tidj , σ) to get (x1‖x2) ∈ Λ⊥q (Aidj ) of norm ≤ σ
√

3m.
2. Sample s0 ←↩ U(Znq ) and encrypt x2 ∈ Z2m as c0 = B0,VK · s0 + x2 ∈ Z2m

q .
3. Sample s ←↩ U(Znq ). For i = 1 to `, sample ei ←↩ DZm,αq and a random matrix

Ri ∈ Zm×m whose columns are sampled from DZm,σ. Then, compute:

ci = Bi,VK · s + p · (ei‖(eTi ·Ri)T ) + idj [i] · x2,

which encrypts x2 ∈ Z2m (resp. 02m) if idj [i] = 1 (resp. idj [i] = 0).
4. Generate a NIZKPoK π0 of s0 so that (B0, c0,

√
2σ/q; s0) ∈ RLWE.

5. For i = 1 to `, generate a NIZKPoK πOR,i of s and s0 so that either:
(i) ((Bi,VK|B0,VK), p−1(ci−c0),

√
2α; (s‖− s0)) ∈ RLWE (the vectors ci and c0 encrypt the

same x2, so that the vector p−1(ci − c0) is close to the Zq-span of (Bi,VK|B0,VK));
(ii) or (Bi,VK, p

−1ci, α; s) ∈ RLWE (the vector ci encrypts 0, so that p−1ci is close to
the Zq-span of Bi,VK).

6. For i = 1 to `, set yi = idj [i]x2 ∈ Z2m and generate a NIZKPoK πK of {ei}`i=1, {yi}`i=1,
x1 such that:

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
p ·Ai

)
and eTi

(
p ·Ai

)
+ yTi Ai = cTi Ai for i ∈ {1, . . . , `},

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ max(σ, αq) ·
√

2m. This is achieved using ProveISIS, giving a triple
(CommK ,ChallK ,RespK), where ChallK = H(M,CommK , {ci}`i=0, π0, {πOR,i}`i=i).

7. Compute sig = S(SK, {ci}`i=0, π0, {πOR,i}`i=1, πK).

The signature consists of

Σ =
(
VK, {ci}`i=0, π0, {πOR,i}`i=1, πK , sig

)
. (7.6)

Verify(gpk,M,Σ): Parse the signature Σ as in (7.6). Then, return 1 in the event that
V(VK, sig, {ci}`i=0, π0, {πOR,i}`i=1, πK) = 1. and if all proofs π0, {πOR,i}`i=1, πK properly
verify. Otherwise, return 0.

Open(gpk, gmsk,M,Σ): Parse gmsk as {Si}`i=0 and Σ as in (7.6). For i = 0 to `, compute a
trapdoor Si,VK ← ExtBasis(Si,Bi,VK) for Bi,VK. Using the delegated basis S0,VK ∈ Z2m×2m

(for which we have S0,VK ·B0,VK = 0 mod q), compute x2 by decrypting c0. Then, using
Si,VK ∈ Z2m×2m, determine which vector among p−1ci mod q and p−1(ci − x2) mod q is
close to the Zq-span of Bi,VK. Set id[i] = 0 in the former case and id[i] = 1 in the latter.
Eventually, output id = id[1] . . . id[`].

Figure 7.5: Sign, Verify and Open.
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with too high probability (which is implied by the strong unforgeability property), the chance of
VK? to show up in a valid pre-challenge opening query is negligible. There thus exists a PPT
forger Bots against the one-time signature for which |Pr[W2] − Pr[W1]| ≤ Advsuf-ots(Bots). In
the following, we henceforth assume that no opening query involves VK?.
Experiment G(b)

3 . We bring a first modification to the generation of the group public key gpk
in the setup phase. Namely, for each i ∈ {0, . . . , `}, the experiment first runs (Bi,1,Ti,1) ←
TrapGen(1n, 1m, q) to obtain a matrix Bi,1 ∈ Zm×nq with a short basis Ti,1 ∈ Zm×m. Note that
the distribution of Bi,1 is statistically close to the uniform distribution over Zm×nq . Next, the
experiment sets Bi,0 = Ri ·Bi,−1 −Bi,1 ·Hvk(VK?), where Ri ∈ Zm×m is a matrix whose rows
are vectors sampled from the distribution DZm,σ. The result of [GPV08, Lemma 5.2] implies that
matrices {Bi,0}`i=0 will be statistically close to the uniformly distributed matrices produced by
the real key generation algorithm. We can write |Pr[W3]− Pr[W2]| ∈ negl(1n).
Experiment G(b)

4 . In this experiment, we modify the signature opening oracle in the following
way. Recall that, due to the modification introduced in Experiment G(b)

2 , each opening query
involves a signature Σ =

(
VK, {ci}`i=0, π0, {πOR,i}`i=1πK , sig

)
for which VK 6= VK? unless the

one-time signature is not strongly unforgeable. For this reason, each matrix Bi,VK can be written
as

Bi,VK =
[

Bi,−1
Bi,0 + Bi,1Hvk(VK)

]
=
[

Bi,−1
Ri ·Bi,−1 + Bi,1 ·

(
Hvk(VK)−Hvk(VK?)

) ] ,
where Hvk(VK)−Hvk(VK?) is a non-singular n×n matrix over Zq. This implies that the trapdoor
Ti,1 ∈ Zm×m of Bi,1 – which was defined in Experiment G(b)

3 – can be used to generate a short
basis for the lattice Λ⊥(Bi,VK) as in step 2 of the SampleRight algorithm of [ABB10a, Section 4.2].
The obtained short basis Ti,VK ∈ Z2m×2m satisfies Ti,VK ∈ Z2m×2m ·Bi,VK = 0 mod q and it can
be used exactly in the same way as the delegated bases Si,VK of the actual opening algorithm to
identify the signer. This modification is thus purely conceptual and we thus have Pr[W4] = Pr[W3].
We remark that, in this experiment, the trapdoors {Si}`i=0 of matrices {Bi,−1}`i=0 are not used
any longer.
Experiment G(b)

5 . This experiment is identical to Experiment G(b)
4 but we slightly modify the

setup phase in step c of the key generation algorithm. Recall that Experiment G(b)
4 generates

(Bi,−1,S′i) ← SuperSamp(1n, 1m, q,Ai,1,−AT
i,2 · Bi,0) so as to obtain a matrix Bi,−1 ∈ Zm×nq

satisfying the equality

BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q (7.7)

at step c of Keygen. In contrast, Experiment G(b)
5 proceeds by generating (Bi,1,Ti,1) ←

TrapGen(1n, 1m, q) and choosing Bi,−1,Bi,0 uniformly in Zm×nq . Then, it generates

(Ai,1,T′i)← SuperSamp(1n, 1m, q,Bi,−1,−BT
i,0 ·Ai,2),

which satisfies (7.7). The same arguments as in [GKV10, Lemma 5] imply that the set
{Bi,−1,Bi,0,Bi,1,Ai}`i=0 have a distribution which is negligibly far apart from their distribution
in Experiment G(b)

4 .
The setup phase is completed by using TA to compute group member’s private keys

{gsk[j]}N−1
j=0 . Since A’s view is not noticeably affected by this modification, we have |Pr[W5]−

Pr[W4]| ∈ negl(1n).
Experiment G(b)

6 . Here, we modify the generation of the challenge signature Σ? as follows.
At step 5 of the signing algorithm, instead of computing the NIZK proofs {π?OR,i}`i=1 using the
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actual witnesses, the experiment generates a simulated non-interactive proof by programming the
random oracle. The statistical zero-knowledge property of the Micciancio-Vadhan proof system
[MV03] guarantees that the distribution of {π?OR,i}`i=1 remains statistically unchanged (note that
{π?OR,i}`i=1 are simulated proofs for true statements). Therefore it comes that |Pr[W6]−Pr[W5]| ∈
negl(1n). Note that negl(1n) incorporates the small probability that the NIZK simulator fails
because it accidentally has to program the random oracle on an input where it was previously
defined.
Experiment G(b)

7 . In this experiment, we bring a new modification to the generation of Σ?. The
real proof of knowledge π?K is replaced by a simulated proof which is obtained by programming
the random oracle H at step 6 of the signing algorithm. Similarly to the previous transition, we
can write |Pr[W7] − Pr[W6]| ∈ negl(1n), where negl(1n) encompasses the tiny probability that
the NIZK simulator fails.
Experiment G(b)

8 . We introduce yet another change in the generation of Σ?. For each i ∈
{1, . . . , `}, instead of computing c?i = Bi,VK? · s + p · ei + id[jb]x2, where x2 ∈ Z2m is the vector
encrypted by c0, the experiment sets c?i = zi + id[jb] · x2 for a randomly drawn zi ←↩ U(Z2m

q ).
Under the LWEq,α assumption, we argue that this change should not significantly affect A’s view.
Concretely, assuming that an adversary can distinguish Experiment G(b)

8 from Experiment G(b)
7 ,

we can build a distinguisher Blwe for the LWEq,α. The latter distinguisher is described in the proof
of Lemma 7.10 for completeness. For this reason, we find |Pr[W8]−Pr[W7]| ≤ AdvLWEq,α(Blwe).
Experiment G

(b)
9 . As a final change in the generation of Σ?, we choose c?i at random in

U(Z2m
q ) for i ∈ {1, . . . , `}. This is just a conceptual change since {c?i }`i=1 have exactly the same

distribution as in Experiment G(b)
8 . This implies Pr[W9] = Pr[W8]. Moreover, in Experiment G(b)

9 ,
it is obvious that Pr[W9] = 1/2 since Σ? is completely independent of the random bit b ∈R {0, 1}.

To conclude the proof, we prove the indistinguishability of Experiment G(b)
8 and Experi-

ment G(b)
7 .

Lemma 7.10. Under the LWEq,α assumption, no PPT adversary can distinguish Experiment
G

(b)
8 and Experiment G(b)

7 .

Proof. Towards a contradiction, suppose that an adversary A can tell the two experiments apart
with non-negligible advantage. We build the following LWE distinguisher Blwe. It takes as input
a LWEq,α instance {(B′i, zi)}`i=1, where B

′
i ∈ Zm×nq and zi ∈ Zmq for each i ∈ {1, . . . , `}. Each

component zi is either uniform in Zmq or of the form zi = B′i · s + ei, where ei is sampled from
DZm,αq.

In order to prepare the group public key gpk, algorithm Blwe defines Bi,−1 = B′i for i = 1
to `. For each i ∈ {1, . . . , `}, it also generates Bi,1 by running (Bi,1,Ti,1)← TrapGen(1n, 1m, q)
and also sets Bi,0 = Ri ·Bi,−1 −Bi,1Hvk(VK?) as in Experiment G(b)

7 . By doing so, Blwe is able
to answer all signature opening queries using the trapdoor Ti,1 of Bi,1 unless the failure event
introduced in Experiment G(b)

2 occurs.
During the challenge phase, Blwe samples x2 in DZ2m,σ and defines

c?i =
[

p · zi
Ri · (p · zi)

]
+ id[jb] · x2, for i ∈ {1, . . . , `},

while c?0 is obtained by faithfully encrypting x2. The proof π?0 is generated as a real proof whereas
{π?OR,i}`i=1 and π?K are obtained from their respective NIZK simulators.

After the challenge phase, A is granted further access to the opening oracle and its opening
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queries are handled as in the first phase. At the end of the experiment, A outputs a random bit
b′ and Blwe outputs 1 if and only if b′ = b.

We note that each Bi,VK? is such that Bi,VK? =
[

Bi,−1
Ri ·Bi,−1

]
for i ∈ {1, . . . , `}. If each zi is

such that zi = B′i · s+ ei, where ei ∈ DZm,αq, then {c?i }`i=1 are distributed as in Experiment G(b)
7 .

Indeed, the matrices {Ri}`i=1 introduced in Experiment G(b)
3 are statistically independent of A’s

view until the challenge phase because the product Ri ·Bi,−1 is statistically close to the uniform
distribution over Zm×nq . In this case, the reduction Blwe is running Experiment G(b)

7 with A.
Now, if each zi is uniform in Zmq , we are clearly in Experiment G(b)

8 .

This concludes the proof of Theorem 7.9.

7.3.3 Traceability
Theorem 7.11. Assuming that q > logN , the scheme is fully traceable in the ROM under
the SISm,q,β assumption. More precisely, for any PPT traceability adversary A with success
probability ε, there exists an algorithm B solving the SISm,q,β problem with probability at least

1
2N ·

(
ε− 1

2λ
)
·
(ε− 1/2λ

qH
− 1

2λ
)
,

where qH is the number of queries to H : {0, 1}∗ → {0, 1}λ.

The traceability property is proved in the same way as in the proof of Theorem 7.8.

Proof. For the sake of contradiction, let us assume that a traceability adversary A has non-
negligible success probability ε in the model of Definition 6.8. In the random oracle model,
we build an algorithm B that solves a given SIS2m,q,β instance with non-negligible probability.
Algorithm B receives as input a matrix Â ∈ Z2m×n

q and has to find a vector v ∈ Z2m in Λ⊥q (Â)
such that 0 < ‖v‖ ≤ β. Let Ā ∈ Zm×nq be the matrix consisting of the first m rows of Â.

Initialization. As in the proof of Theorem 7.8, algorithm B first flips a fair coin coin←↩ U({0, 1})
that will determine its strategy and the way to set up the group public key. If coin = 0, algorithm
B will try to find a non-zero short vector of Λ⊥q (Ā) and pad it with zeroes to obtain a short
non-zero vector in Λ⊥q (Â). If coin = 1, B will embed the entire input matrix Â in one of the
{Ai}`i=1.
• If coin = 0, algorithm B first runs TrapGen(1n, 12m, q) to generate C ∈ Z2m×n

q with a basis
TC ∈ Z2m×2m of Λ⊥q (C) with ‖T̃C‖ ≤ O(

√
n log q). Next, B samples a collection of ` + 1

matrices Q0, . . . ,Q` ∈ Z2m×m, where each matrix entry sampled independently in DZ,ω(
√

logn).
Then, B draws j? ←↩ U({0, . . . , N − 1}), hoping that user j? will be the one whose identity
idj? = idj? [1] . . . idj? [`] ∈ {0, 1}` will be uncovered by the opening algorithm for A’s forgery at the
end of the game. Also, B defines A0 = Q0 · Ā+ (

∑`
i=1 idj? [i]) ·C and Ai = Qi · Ā+ (−1)idj? [i] ·C

for each i ∈ [1, `]. It also sets A = Ā.
Then, for each i ∈ {0, . . . , `}, B chooses Bi,0 ←↩ U(Zm×nq ) and parses the matrix Ai ∈

Z2m×n
q as AT

i =
[
AT
i,1 AT

i,2
]
, where Ai,1,Ai,2 ∈ Zm×nq . Then, it runs (Bi,1,TBi,1) ←

SuperSamp(1n, 1m, q,Ai,2,0) to obtain a matrix Bi,1 ∈ Zm×nq such that AT
i,2 ·Bi,1 = 0 mod q. It

erasesTBi,1 , that will not be needed, and generates (Bi,−1,S′i)← SuperSamp(1n, 1m, q,Ai,1,−BT
i,0·

Ai,2) which will satisfy
BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q,
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as desired. Finally, B re-randomizes each S′i as Si ← RandBasis(S′i) for i = 0 to `. We observe
that B notably departs from the real key generation algorithm in that Bi,1 is generated from Ai,2
(whereas Keygen proceeds the other way around at step 2) using SuperSamp. However, by Lemma
4 in [GKV10], the distribution of the resulting matrices is statistically the same either way.

The group public key gpk =
(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0

)
is finally given to A. As in the

proof of Theorem 7.8, for each j 6= j?, we have

Aidj =
[

Ā
A0 +

∑`
i=1 idj [i]Ai

]
=
[

Ā
(Q0 +

∑`
i=1 idj [i]Qi) · Ā + hidj ·C

]
∈ Z2m×n

q ,

where hidj ∈ {1, . . . , `} denotes the Hamming distance between idj and idj? . As in the
proof of Theorem 7.8, for each identifier idj 6= idj? , B is able to compute a basis T′idj of
Λ⊥q (Aidj ) with ‖T̃′idj‖ ≤ ω(

√
2mn log q logn) from the basis TC of Λ⊥q (C). The obtained bases

{T′idj}idj 6=idj? are then re-rerandomized as Tidj ← RandBasis(T′idj , ω(
√

2mn log q logn)). How-
ever, the reduction B is unable to compute a trapdoor for the matrix Aidj? corresponding to the
expected target group member j?. Fortunately, B can derive a trapdoor Tidj for each j 6= j?.

Since the rows of each Qk are sampled from DZm,ω(
√

logn), the matrices A0, . . . ,A` ∈ Z2m×n
q

have a distribution which is statistically close to that of independent and uniformly random
matrices over Z2m×n

q , which are also statistically independent of A. Also, by Lemma 3.10, the
distribution of {Tidj}j 6=j? is statistically close to that of the real system.
• If coin = 1, the reduction B chooses i? ←↩ U({1, . . . , `}) and defines Â to be the ma-
trix Ai? ∈ Z2m×n

q that will be part of gpk. It runs TrapGen(1n, 1m, q) to obtain A ∈ Zm×nq

with a basis TA of Λ⊥q (A) such that ‖T̃A‖ ≤ O(
√
n log q). Next, it independently sam-

ples A0, . . . ,Ai?−1,Ai?+1, . . . ,A` ←↩ U(Z2m×n
q ) and sets Ai? = Â. Finally, B computes

{(Bi,−1,Bi,0,Bi,1)}`i=0 in the same way as in the case coin = 0. As in the previous case,
B thus knows a trapdoor Si for Bi,−1 for each i ∈ {0, . . . , `}. The group public key gpk =(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0

)
, which is distributed (statistically) as in the real system, is given

as input to A. Using TA, the reduction B is able to compute a delegated basis Tidj for all users
j ∈ {0, . . . , N − 1} exactly as in the real scheme.

Regardless of the value of coin ∈ {0, 1}, the adversary A is run on input of gmsk := {Si}`i=0
and gpk :=

(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0, H, Πots, p

)
.

Queries. Algorithm B starts interacting with adversary A whose queries are handled in a way
that depends on coin ∈ {0, 1}.
• If coin = 0, B aborts if A ever queries the private key gsk[j?] of user j?. When A queries
a private key gsk[j] for j ∈ {0, . . . , N − 1}\{j?}, B reveals the previously computed short
basis Tidj . When A queries the signing oracle, B faithfully runs the signing algorithm whenever
the involved user j is not j?. For each signing query involving the expected target user j?,
B samples x2 ←↩ DZ2m,σ and s0, s ←↩ U(Znq ). Then, it computes c0 = B0 · s0 + x2 as well as
ci = Bi,VK · s+ p · [ei|ei ·Ri] + idj? [i?] · x2 for each i ∈ {1, . . . , `}. The proof π0 is computed as a
real proof (i.e., using the witness x2), whereas all other non-interactive proofs {πOR,i}`i=1 and
πK are simulated using the appropriate NIZK simulator, by programming the random oracle.
Since the simulator is statistically zero-knowledge, the resulting signature Σ will be statistically
indistinguishable from a real signature.
• If coin = 1, B has all private keys {gsk[j]}N−1

j=0 at disposal since it knows TA. It can thus
perfectly answer A’s queries by running the actual signing algorithm or returning the queried
private keys gsk[j].
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For each coin ∈ {0, 1}, queries to the random oracle H are handled by returning a uniformly
chosen value in {0, 1}λ. For each κ ∈ {1, . . . , qH}, rκ will stand for the answer to the κ-th H-query.
As usual, if a given random oracle query occurs more than once, B responds by returning the
previously defined value.

Forgery. Eventually, A outputs a signature Σ? =
(
{c?i }`i=0, π

?
0 , {π?OR,i}`i=1, π

?
K

)
on some message

M? with probability ε. If we parse the proof π?K as (Comm?
K ,Chall?K ,Resp?K), w.h.p., A must

have queried H on the input (M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=1). Otherwise, the probability

to have Chall?K = H(M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=1) is at most 1/2λ. With probability

ε−1/2λ, the tuple (M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=1) was the input of the κ-th random oracle

query for some κ? ∈ {1, . . . , qH}.
Now, B starts a second execution of the adversary A with the same random tape and input

as in the first run. All queries are answered as in the latter with a difference in the treatment
of random oracle queries. Namely, the first κ? − 1 hash queries – which are necessarily the
same as in the first execution because A’s random tape has not changed – receive the same
answers r1, . . . , rκ?−1 as in the first run. Consequently, the κ?-th query will involve the tuple
(M?,Comm?

K , {c?i }`i=0, π
?
0 , {π?OR,i}`i=1) as in the first execution. However, a forking occurs as,

from this point forward, A obtains fresh random oracle values r′κ? , . . . , r′qH which are independent
of the subsequence of answers in the first execution. The General Forking Lemma of Bellare and
Neven [BN06] implies that, with probability at least

(
ε− 1

2λ

)(
ε−1/2λ
qH

− 1
2λ

)
, it holds that: (1)

A’s forgery also pertains to (M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=1) in the second run; (2) we also

have r′κ? 6= rκ? . Hence, using the knowledge extractor of the proof of knowledge π?K , B extracts
vectors e1, . . . , e` ∈ DZ2m,αq and x1 ∈ Zm, y1, . . . ,y` ∈ Z2m satisfying

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
p ·Ai

)
and eTi

(
p ·Ai

)
+ yTi Ai = cTi Ai, for i ∈ {1, . . . , `} (7.8)

with ||x1|| ≤ σ
√
m and ||yi|| ≤ σ

√
2m for each i ∈ {1, . . . , `}.

The reduction B then opens either of the two forgeries using {Si}`i=0 (note that both signatures
necessarily open to the same identity id as they involve the same {c?i }`i=1). At this point, B
aborts and declares failure if the opening does not unveil user j?’s identity. Still, with probability
at least 1/N , B’s was fortunate in its random choice for j? and the opening algorithm reveals
idj? .

If this desirable event occurs, B considers the following situations.

- If yi = idj? [i] · x2 for each i ∈ {1, . . . , `}, where x2 ∈ Z2m is the vector encrypted by c?0, B
aborts if coin = 1. Otherwise, relations (7.8) guarantee that

xT1 ·A + cT0 ·A0 +
∑̀
i=1

idj? [i] · xT2 ·Ai = xT1 ·A + xT2 ·A0 +
∑̀
i=1

idj? [i] · xT2 ·Ai

= (x1‖x2)T ·
[

A
A0 +

∑`
i=1 idj? [i] ·Ai

]
= (x1‖x2)T ·

[
Ā

(Q0 +
∑`
i=1 idj? [i]Qi) · Ā

]
= 0 mod q,

where the first equality follows from the fact that BT
0 ·A0 = 0 mod q and c?0 is of the form

c?0 = B0 · s0 + x2. This implies that v = x1 + x2 ·
(
Q0 +

∑`
i=1 idj? [i]Qi

)
is a vector of Λ⊥(Ā).
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A similar analysis to [Boy10] shows that v is both short and non-zero with overwhelming
probability. As a consequence, B outputs (x2‖0m) which is a short non-zero vector such that
(x2‖0m)T · Â = 0 mod q.

- If there exists i ∈ {1, . . . , `} such that yi 6= idj? [i] · x2, where x2 ∈ Z2m is the vector obtained
by decrypting c?0 using S0, then B aborts if coin = 0. Otherwise, the non-interactive proofs
{π?OR,i}i imply that c?i = Bi · s+p ·e′i+ idj? [i] ·x2 for some x2, e′1, . . . , e′` ∈ Z2m and s0, s ∈ Znq .
By multiplying the latter expression of c?i T by Ai, we find

cTi ·Ai = p · (e′i
T ·Ai) + idj? [i] · xT2 Ai.

Subtracting the latter equation from the second equation of (7.8), we find(
p · (eTi − e′i

T ) + (yTi − idj? [i] · xT2 )
)
·Ai = 0 mod q.

If p · (eTi − e′i
T ) + (yTi − idj? [i] · xT2 ) 6= 0 mod q, it is a short non-zero vector in Λ⊥(Ai). Given

that Ai = Â with probability 1/`, we solved the given SIS instance with the same probability.
Finally, if

p · (eTi − e′i
T ) + (yTi − idj? [i] · xT2 ) = 0 mod q,

the relative lengths of vectors ei, e′i,yi,x2 with respect to p implies ei = e′i and yi = idj? [i] ·x2,
which contradicts the assumption that yi 6= idj? [i] · x2.

The lower bound on the reduction’s probability of success is assessed exactly in the same way as
in the proof of Theorem 7.8.
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Chapter 8

A Lattice-Based Group Signature with
Verifier-Local Revocation

In this chapter, which corresponds to a joint work with S. Ling, K. Nguyen and H. Wang
published in [LLNW14], we introduce a group signature with verifier-local revocation from lattice
assumptions (defined in Section 6.4). In comparison with known lattice-based group signatures,
while the schemes from [GKV10], [CNR12] and Chapter 7 follow the CPA-anonymity and CCA-
anonymity notions from [BBS04, BMW03], our construction satisfies the (weaker) notion of
selfless-anonymity for VLR group signatures from [BS04]. Nevertheless, our scheme has several
advantages over the contemporary counterparts:

• Functionality: Our scheme is the first lattice-based group signature that supports membership
revocation. This is a desirable functionality for any group signature scheme.

• Simplicity: Our scheme is conceptually simple. The signature is basically an all-in-one proof of
knowledge, made non-interactive using Fiat-Shamir paradigm [FS86]. Moreover, the scheme
departs from the traditional paradigm, and is free of LWE-based encryptions.

• Efficiency: For a security parameter λ and for a group of N members, the group public key
and the signature have bit-sizes Õ(λ2) · logN and Õ(λ) · logN , respectively. This result is
comparable to that of Chapter 7, and is a noticeable improvement over those of [GKV10] and
[CNR12].

• Security assumption: Our scheme is proved to be secure (in the random oracle model) based
on the worst-case hardness of approximating the Shortest Independent Vectors Problem, for
general lattices of dimension n, to within a factor γ = Õ(n1.5).

Overview of Our Techniques. The main building block of our VLR group signature scheme is
an interactive protocol allowing a prover to convince the verifier that he is a certified group
member (i.e., he possesses a valid secret signing key), and that he has not been revoked (i.e.,
his “revocation token” is not in the verifier’s blacklist). The protocol is repeated many times
to make the soundness error negligibly small, and then is converted to a signature scheme via
the Fiat-Shamir heuristic. Roughly speaking, in the random oracle model, the traceability and
anonymity of the resulting group signature are based on the facts that the underlying protocol is
a proof of knowledge, and that it can be simulated.
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8. A Lattice-Based Group Signature with Verifier-Local Revocation

We consider a group of N = 2` users, where each user is identified by a string d ∈ {0, 1}`
denoting the binary representation of his index in the group. Let n,m, β, and q ≥ 2 be integers (to
be determined later). Our scheme operates within the structure of a Bonsai tree of hard random
lattices [CHKP10] and described in Chapter 3, namely, a matrix A as described in Figure 8.1
and a vector u ∈ Znq . Initially, the group user with identity d = d[1] . . . d[`] ∈ {0, 1}` is issued a

A =



A0
A0

1
A1

1
...

A0
`

A1
`


∈ Z(2`+1)m×n

q ,Ad =


A0

Ad
1[1]
...

Ad
` [`]

 ∈ Z(`+1)m×n
q .

Figure 8.1: Matrices A and Ad.

Bonsai signature of his identity, see Section 3.2.4, that is a small vector z ∈ Z(`+1)m, such that
‖z‖∞ ≤ β and zTAd = uT mod q, where Ad, defined in Figure 8.1, is a subtree defined by d. In
other words, z is a solution to the Inhomogeneous Small Integer Solution (ISIS, see Section 2.1 of
Chapter 2) instance (Ad,u). To prove that he is a certified group member without leaking z, the
user can perform a proof of knowledge (e.g., [MV03, Lyu08, LNSW13]) to convince the verifier
that he knows such a vector z in zero-knowledge.

At this stage, one can obtain a secure identity-based identification scheme (as shown in
[Rüc10a]), but it is insufficient for our purposes: to achieve anonymity, the group user also
has to hide his identity d, and hence the matrix Ad should not be explicitly given. This
raises an interesting question: If the verifier does not know Ad, how could he be convinced that
zT ·Ad = uT mod q? To address this issue, we introduce the following extension: we add ` suitable
zero-blocks of size m to vector z to obtain an extended vector x =

(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈

Z(2`+1)m, where the added zero-blocks are x1−d[1]
1 , . . . ,x1−d[`]

` . We then have ‖x‖∞ ≤ β, and
xT ·A = uT mod q. Namely x is a solution to the ISIS instance given by the whole Bonsai tree,
with an additional condition: for each i ∈ {1, . . . , `}, one of the two blocks x0

i ,x1
i must be zero,

where the arrangement of the zero-blocks is determined by d. To prove in zero-knowledge the
possession of such a vector x, we adapt the “Stern Extension” proof system from [LNSW13],
where the user identity d is hidden by a “one-time pad” technique. This technique is as follows. In
each round of the protocol, the user samples a fresh uniformly random e ∈ {0, 1}` and permutes
the blocks of x to obtain the permuted vector v, whose zero-blocks are arranged according to
d⊕ e (where ⊕ denotes the bit XOR operation). Depending on the verifier’s challenge, the user
later will either reveal e, or reveal d⊕ e and show that v has the correct shape determined by
d⊕ e. Since d⊕ e is uniformly random over {0, 1}`, the user identity d is completely hidden. As
a result, the user can anonymously prove his group membership.

We now briefly review our revocation mechanism. For each group user’s secret key x, consider
the first block x0 that corresponds to the “root” A0 of the Bonsai tree, and let his revocation
token be xT0 ·A0 mod q ∈ Znq . We choose suitable parameters, and sample x0 from a proper
distribution, so that the token is statistically close to uniform over Znq . At a high level, our
revocation mechanism works as follows. The user is asked to sample a uniformly random vector
r0 ∈ Zmq , and to compute a commitment c0 using a (lattice-based) statistically hiding and
computationally binding string commitment scheme COM, for which the value rT0 ·A0 mod q is
part of the committed string. Depending on the verifier’s challenge, the user will either reveal r0
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8.1. Preparation

or reveal x0 + r0. In the former case, the verifier can check for honest computation of c0, while
in the latter case, he can perform the revocation check using a list of tokens of revoked users
RL =

{
{ui}i

}
⊂ Znq , as follows:

∀ui ∈ RL, check that c0 6= COM
(
(x0 + r0)T ·A0 − uTi mod q

)
.

Assuming that the user has been revoked, i.e., there exists i such that xT0 ·A0 mod q = uTi . If he
follows the protocol, then COM

(
(x0 + r0)T ·A0 − uTi mod q

)
= COM(rT0 ·A0 mod q) = c0, and

thus, he gets rejected. If there is a false acceptance, then we can use it to break the computational
binding property of COM. On the other hand, the probability of false rejection is negligibly small,
since COM is statistically regular.

Putting everything together, we obtain a lattice-based VLR group signature that has several
nice features, as mentioned earlier. In the process, we exploit the rich structure of the Bonsai
tree [CHKP10], and the versatility of the “Stern Extension” proof system [LNSW13]. We also
employ a special “one-time pad” technique, and a novel revocation mechanism.

8.1 Preparation

We now describe the parameters and some specific constructions that will be used in our scheme.

8.1.1 Parameters
Our group signature scheme involves two main parameters: a security parameter n and a maximum
expected number of group users N = 2` ∈ poly(n). Given n, we fix the other scheme parameters
as in Table 8.1.

Parameter Value or Asymptotic bound

Modulus q ω(n2 logn)

Dimension m ≥ 2n log q

Gaussian parameter σ ω(
√
n log q logn)

Integer norm bound β dσ · logme

Number of ‘decompositions’ p blog βc+ 1

Sequence of integers β1 = dβ/2e;β2 = d(β − β1)/2e
β1, β2, β3, . . . , βp β3 = d(β − β1 − β2)/2e; . . . ;βp = 1

Number of protocol repetitions t ω(logn)

Table 8.1: Parameters of our VLR group signature scheme. The sequence β1, β2, . . . , βp satisfies∑p
j=1 βj = β, and every integer in the interval [−β, β] can be efficiently expressed as a subset

sum of elements in the set {±β1,±β2, . . . ,±βp}.

8.1.2 Some Specific Sets
We now define some specific sets of vectors and permutations that will be extensively used
throughout this work. First, we denote by B3m the set of all vectors in {−1, 0, 1}3m having
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8. A Lattice-Based Group Signature with Verifier-Local Revocation

exactly m coordinates −1; m coordinates 0; and m coordinates 1. Given a binary string
d = d[1] . . . d[`] ∈ {0, 1}`, we define two sets:

• Secretβ(d): The set of all vectors x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)m consisting of 2` +

1 blocks of size m, such that ‖x‖∞ ≤ β, and the following ` blocks are zero-blocks 0m:
x1−d[1]

1 , . . . ,x1−d[`]
` .

• SecretExt(d): The set of all vectors x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ {−1, 0, 1}(2`+1)3m consisting

of 2`+ 1 blocks of size 3m, such that the `+ 1 blocks x0,xd[1]
1 , . . . ,xd[`]

` are elements of B3m,
and the remaining ` blocks x1−d[1]

1 , . . . ,x1−d[`]
` are zero-blocks 03m.

Given a vector x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)3m consisting of 2` + 1 blocks of size 3m,

we define two sets of permutations of x:

• The set S of all permutations that keep the arrangement of the blocks. Specifically, if π ∈ S,
then

π(x) =
(
τ0(x0)‖τ0

1 (x0
1)‖τ1

1 (x1
1)‖ . . . ‖τ0

` (x0
` )‖τ1

` (x1
` )
)
,

where τ0, τ0
1 , τ

1
1 , . . . , τ

0
` , τ

1
` are certain permutations of 3m elements.

• The set T = {Te
∣∣ e ∈ {0, 1}`}, where for e = e[1] . . . e[`], Te ∈ T rearranges the blocks as

follows:
Te(x) =

(
x0‖xe[1]

1 ‖x
1−e[1]
1 ‖ . . . ‖xe[`]` ‖x

1−e[`]
`

)
.

In particular, given d, e ∈ {0, 1}`, π ∈ S, and x ∈ Z(2`+1)3m, it can be checked that:
x ∈ SecretExt(d)⇔ π(x) ∈ SecretExt(d)⇔ Te ◦ π(x) ∈ SecretExt(d⊕ e). (8.1)

8.1.3 The Decomposition - Extension Technique
Ling et al. [LNSW13] proposed a Stern-type zero-knowledge proof of knowledge for the ISIS∞q,m,β
problem that enjoys a strong security guarantee: the best way to break their protocol is to solve the
underlying ISIS problem. They achieve this feature by using a versatile Decomposition-Extension
framework. Adapting their technique, we construct the following procedures:

Elementary Decomposition. On input a vector v = (v1, v2, . . . , vm) ∈ Zm such that ‖v‖∞ ≤ β,
the procedure EleDec outputs p = blog βc + 1 vectors w̃1, . . . , w̃p ∈ {−1, 0, 1}m, such that∑p
j=1 βj · w̃j = v. This procedure works as follows:

1. For each i ∈ {1, . . . ,m}, express vi as vi = β1 · vi,1 + β2 · vi,2 + . . . + βp · vi,p, where ∀j ∈
{1, . . . , p} : vi,j ∈ {−1, 0, 1}. It was noted in [LNSW13] that for β1, β2, . . . , βp given in Table
8.1, this step can easily be done.

2. For each j ∈ {1, . . . , p}, let w̃j := (v1,j , v2,j , . . . , vm,j) ∈ {−1, 0, 1}m. Output w̃1, . . . , w̃p.

Elementary Extension. On input a vector w̃ ∈ {−1, 0, 1}m, the procedure EleExt extends w̃ to a
vector w ∈ B3m. This procedure works as follows:

1. Let λ(−1), λ(0) and λ(1) be the numbers of coordinates of w̃ that equal to −1, 0, and 1
respectively.

2. Pick a random vector ŵ ∈ {−1, 0, 1}2m that has exactly (m−λ(−1)) coordinates −1, (m−λ(0))
coordinates 0, and (m− λ(1)) coordinates 1. Output w =

(
w̃‖ŵ

)
∈ B3m.
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Witness Decomposition and Extensions. On input x ∈ Secretβ(d) for some d = d[1] . . . d[`] ∈ {0, 1}`,
the procedure WitnessDE outputs p vectors z1, . . . zp ∈ SecretExt(d). This procedure works as
follows:

1. Write x as the concatenation of 2`+ 1 blocks of size m, namely: x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
.

2. Run EleDec on each of the ` + 1 blocks x0,xd[1]
1 , . . . ,xd[`]

` to obtained (` + 1)p decomposed
vectors. Then run EleExt on each of the decomposed vectors to obtain (`+ 1)p vectors in B3m,
denoted respectively by {w0,j}pj=1, {w

d[1]
1,j }

p
j=1, . . . , {w

d[`]
`,j }

p
j=1.

3. Create `p zero-vectors of dimension 3m, and denote them by {w1−d[1]
1,j }pj=1, . . . , {w

1−d[`]
`,j }pj=1.

4. For each j ∈ {1, . . . , p}, let zj =
(
w0,j‖w0

1,j‖w1
1,j‖ . . . ‖w0

`,j‖w1
`,j

)
. Output z1, . . . , zp ∈

SecretExt(d).

Matrix Extension. On input matrix A ∈ Z(2`+1)m×n
q , the following procedure MatrixExt outputs

matrix A∗ ∈ Z(2`+1)3m×n
q :

1. Write A as the concatenation of 2`+ 1 component-matrices in Zm×nq .

2. Append 2m zero-columns to each of the component-matrices, then output the extended
matrix A∗.

In particular, let {zj}pj=1 ← WitnessDE(x) and A∗ ← MatrixExt(A) then we have xT ·A =
(
∑p
j=1 βj · zj)T ·A∗. We illustrate our Decomposition-Extension technique in Figure 8.2, where

the first bit of d is 1 and its last bit is 0. After performing Decomposition-Extension, one has
that zj ∈ SecretExt(d) for all j ∈ {1, . . . , p}, and

(∑p
j=1 βj · zj

)T ·A∗ = xT ·A = uT mod q.

Therefore, in the protocol in Section 8.2, in order to prove that x ∈ Secretβ(d) for some
d ∈ {0, 1}`, and A · x = u mod q, one can instead prove that:

(
p∑
j=1

βj ·zj)T ·A∗ = uT mod q and ∀j ∈ {1, . . . , p}, π ∈ S, e ∈ {0, 1}` : Te◦π(zj) ∈ SecretExt(d⊕e),

where the latter relation follows from the fact that zj ∈ SecretExt(d) for all j ∈ {1, . . . , p}, and
from Equation (8.1).

8.2 The Underlying interactive protocol

We recall that the main building block of our VLR group signature scheme is an interactive
protocol that allows the prover to convince the verifier that he is a certified group member (i.e.,
he has a valid secret key), and that he has not been revoked (i.e., his revocation token is not in
the verifier’s list RL). In Section 8.3, the protocol is repeated t = ω(logn) times to make the
soundness error negligibly small, and then is transform to a signature scheme via Fiat-Shamir
heuristic. The interactive protocol is summarized as follows:
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xT ·A = uT (mod q)
x ∈ Secretβ(d)

d = (1 . . . 0) ∈ {0, 1}`

xT0 (x0
1)T(x1

1)T (x0
` )T(x1

` )T
· A0

A0
1

A1
1

A0
`

A1
`

u=

n

m

A0

A∗=

0 2m

A0
1

2m

0

A1
1

0

A0
`

0

A1
`

0

β1· + . . . + βp· =

z1=

}
03m

β1· + . . . + βp· =

β1· + . . . + βp· =

}
03m

zp=. . . . . .

}
03m

}
03m

x0

x1
1

x0
`

is an element of B3mwhere

Figure 8.2: An illustration of our Decomposition-Extension technique.
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• The public parameters are

A =



A0
A0

1
A1

1
...

A0
`

A1
`


∈ Z(2`+1)m×n

q . and u ∈ Znq .

• The prover’s witness is a x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Secretβ(d) for some d ∈ {0, 1}`. The

verifier’s additional input is a set RL =
{
{ui}i

}
⊂ Znq , whose cardinality is at most N − 1.

• The prover’s goal is to convince the verifier in that:

1. xT ·A = uT mod q and x ∈ Secretβ(d), while keeping d secret.

2. xT0 ·A0 mod q 6∈ RL.

8.2.1 Description of the Protocol

Let COM be the KTX commitment scheme [KTX08]. Let A∗ ← MatrixExt(A). Prior to the
interaction, the prover applies the Decomposition-Extension technique on his witness: Let
z1, . . . , zp ←WitnessDE(x). The protocol follows Stern’s approach for three-pass zero-knowledge
identification schemes [Ste96], for which we employ an additional commitment c0 to enable the
revocation mechanism. It is described in Figure 8.3.

8.2.2 Witness Extraction

The following lemma says that in our protocol, one can extract a satisfying witness under specific
conditions.

Lemma 8.1. Assume that for a given commitment CMT, there exist 3 valid responses RSP(1),
RSP(2), and RSP(3) corresponding to all 3 possible values of the challenge Ch. If COM is a
computationally binding commitment scheme, then one can efficiently extract a vector y =(
y0‖y0

1‖y1
1‖ . . . ‖y0

`‖y1
`

)
∈ Z(2`+1)m satisfying yT · A = uT mod q, y ∈ Secretβ(d) for some

d ∈ {0, 1}`, and yT0 ·A0 mod q 6∈ RL.

Proof. Let CMT =
(
c0, c1, c2, c3

)
∈ (Znq )4, and let RSP(1), RSP(2), RSP(3) as in (8.3), (8.4), and

(8.5), respectively. Since all 3 responses satisfy the verification conditions, the followings are true:

∀j ∈ {1, . . . , p} : vj ∈ SecretExt(d1); c0 = COM(d3, {ψj}pj=1,
(∑p

j=1 βj · hj,0)T ·A0 mod q
)
;

∀ui ∈ RL : c0 6= COM
(
d2, {φj}pj=1,

(∑p
j=1 βj · sj,0

)T ·A0 − uTi mod q
)
;

c1 = COM
(
d2, {φj}pj=1,

(∑p
j=1 βj · sj

)T ·A∗ − uT
)

= COM
(
d3, {ψj}pj=1,

(∑p
j=1 βj · hj

)T ·A∗);

c2 = COM
(
{wj}pj=1

)
= COM

(
{Td3 ◦ ψj(hj)}

p
j=1)

)
;

c3 = COM
(
{vj + wj}pj=1

)
= COM

(
{Td2 ◦ φj(sj)}

p
j=1)

)
.
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1. Commitment: The prover samples a string e ←↩ U({0, 1}`), p permutations π1, . . . , πp ←↩
U(S), and p vectors r1, . . . , rp ←↩ U(Z(2`+1)·3m

q ). For each j ∈ {1, . . . , p}, let rj,0 =
Parse(rj , 1,m). Then it sends the commitment CMT =

(
c0, c1, c2, c3

)
∈ (Znq )4 to the verifier,

where 

c0 = COM
(
e, {πj}pj=1,

(∑p
j=1 βj · rj,0

)T ·A0 mod q
)
,

c1 = COM
(
e, {πj}pj=1,

(∑p
j=1 βj · rj

)T ·A∗ mod q
)
,

c2 = COM
(
{Te ◦ πj(rj)}pj=1

)
,

c3 = COM
(
{Te ◦ πj(zj + rj)}pj=1

)
.

(8.2)

2. Challenge: The verifier sends a challenge Ch←↩ U({1, 2, 3}) to the prover.

3. Response: Depending on the challenge, the prover computes the response RSP differently:

• Case Ch = 1: ∀ j ∈ {1, . . . , p}, let vj = Te ◦ πj(zj), wj = Te ◦ πj(rj), d1 = d⊕ e, and set:

RSP =
(
d1, {vj}pj=1, {wj}pj=1

)
. (8.3)

• Case Ch = 2: ∀ j ∈ {1, . . . , p}, let φj = πj , sj = zj + rj , d2 = e, and set:

RSP =
(
d2, {φj}pj=1, {sj}

p
j=1
)
. (8.4)

• Case Ch = 3: ∀ j ∈ {1, . . . , p}, let ψj = πj , hj = rj , d3 = e, and set:

RSP =
(
d3, {ψj}pj=1, {hj}

p
j=1
)
. (8.5)

Verification: Receiving the response RSP, the verifier proceeds as follows:

• Case Ch = 1: Parse RSP as in (8.3). Check that ∀j ∈ {1, . . . , p} : vj ∈ SecretExt(d1), and
that:

c2 = COM
(
{wj}pj=1

)
and c3 = COM

(
{vj + wj}pj=1

)
.

• Case Ch = 2: Parse RSP as in (8.4). ∀j ∈ {1, . . . , p}, let sj,0 = Parse(sj , 1,m). Check that:∀ui ∈ RL : c0 6= COM
(
d2, {φj}pj=1,

(∑p
j=1 βj · sj,0

)T ·A0 − uTi mod q
)

c1 = COM
(
d2, {φj}pj=1,

(∑p
j=1 βj · sj

)T ·A∗ − uT mod q
)
; c3 = COM

(
{Td2 ◦ φj(sj)}

p
j=1
)
.

• Case Ch = 3: Parse RSP as in (8.5). ∀j ∈ {1, . . . , p}, let hj,0 = Parse(hj , 1,m). Check that:c0 = COM(d3, {ψj}pj=1,
(∑p

j=1 βj · hj,0)T ·A0 mod q
)

c1 = COM
(
d3, {ψj}pj=1, (

∑p
j=1 βj · hj)T ·A∗ mod q

)
; c2 = COM

(
{Td3 ◦ ψj(hj)}

p
j=1
)
.

The verifier outputs Valid if and only if all the conditions hold. Otherwise, he outputs Invalid.

Figure 8.3: Our protocol.
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Since COM is computationally binding, one can deduce that d2 = d3, φj = ψj for all j ∈ {1, . . . , p},
and that: 

(∑p
j=1 βj · (sj,0 − hj,0)

)T ·A0 6∈ RL,

∀j ∈ {1, . . . , p} : wj = Td2 ◦ φj(hj) and vj + wj = Td2 ◦ φj(sj),(∑p
j=1 βj · (sj − hj)

)T ·A∗ = uT mod q.

For each j ∈ {1, . . . , p}, let y′j = sj − hj , then Td2 ◦ φj(y′j) = Td2 ◦ φj(sj)− Td2 ◦ φj(hj) =
vj ∈ SecretExt(d1). It then follows that φj(y′j) ∈ SecretExt(d1 ⊕ d2). Let d = d1 ⊕ d2, then
y′j ∈ SecretExt(d) for all j ∈ {1, . . . , p}, since the permutation φj ∈ S preserves the arrangements
of the blocks of y′j . Now let y′ =

∑p
j=1 βj · y′j ∈ Z(2`+1)3m

q , and let y ∈ Z(2`+1)m be the
vector obtained from y′ by removing the last 2m coordinates in each 3m-block. We note that
‖y‖∞ ≤ ‖y′‖∞ ≤

∑p
j=1 βj · ‖yj‖∞ =

∑p
j=1 βj · 1 = β. Moreover, as y′j ∈ SecretExt(d) for all

j ∈ {1, . . . , p}, we have that y ∈ Secretβ(d).
Let y =

(
y0‖y0

1‖y1
1‖ . . . ‖y0

`‖y1
`

)
, then the blocks y1−d[1]

1 , . . . ,y1−d[`]
` are zero-blocks 0m.

Furthermore, we have that:

yT0 ·A0 =
( p∑
j=1

βj · (sj,0 − hj,0)
)T ·A0 6∈ RL.

Finally, by construction, we have: yT ·A = y′T ·A∗ =
∑p
j=1 βj · yTj ·A∗ =

(∑p
j=1 βj · (sj −

hj)
)T · A∗ = uT mod q. Therefore, we have obtained a vector y satisfying all the conditions

stated in the lemma.

8.3 The VLR group signature scheme

In this section we describe our lattice-based VLR group signature scheme and we prove that
the scheme satisfies the requirements defined in Section 6.4: correctness, selfless-anonymity and
traceability.

8.3.1 Description
We describe the scheme in Figures 8.4 and 8.5.
Remark 8.2. We have some observations on the behaviour of the above key generation algorithm:

• By Theorem 3.7, the distribution of matrix A0 generated by TrapGen(n,m, q) is statistically
close to uniform over Zm×nq . Thus, the distribution of gpk output by KeyGen(n,N) is statistically
close to uniform over Z(2`+1)m×n

q ×Znq . We note that the pair (A,u) resembles the Bonsai tree
structure [CHKP10], where A0 is the “root” of the tree.

• In Step (3a), each coordinate of vector x(d) is either 0 or distributed according to the distribution
DZ,σ (see Theorem 1.24 regarding the output distribution of algorithm GPVSample). By setting
β = dσ · logme, we ensure that ‖x(d)‖∞ ≤ β with overwhelming probability (see Lemma 1.36).
Thus, the event that Step (3a) needs to be repeated only occurs with negligible probability.

• The secret key x(d) of group user with index d satisfies (x(d))T ·A = uT mod q, and x(d) ∈
Secretβ(d).
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8. A Lattice-Based Group Signature with Verifier-Local Revocation

Keygen(1n, 1N ): Given a security parameter n > 0 and N the expected numbers of group members,
proceed as follows.
1. Run TrapGen(n,m, q) (defined in Lemma 3.7) to get A0 ∈ Zm×nq and trapdoor R.
2. Sample u ←↩ U(Znq ), and Ab

i ←↩ U(Zm×nq ) for all b ∈ {0, 1} and i ∈ {1, . . . , `}. Then
define the matrix

A =



A0
A0

1
A1

1
...

A0
`

A1
`


∈ Z(2`+1)m×n

q .

3. For group user with index d ∈ {0, 1, . . . , N − 1}, let d[1] . . . d[`] ∈ {0, 1}` denote the
binary representation of d, and do the following:
a) Sample vectors xd[1]

1 , . . . ,xd[`]
` ←↩ DZm,σ. Compute zT =

∑`
i=1(xd[i]

i )T ·Ad[i]
i mod q,

and sample x0 ∈ Zm with x0 ←↩ GPVSample
(
R,A0,u − z, σ

)
(defined in The-

orem 1.24). Let x1−d[1]
1 , . . . ,x1−d[`]

` be zero-vectors 0m, and define x(d) =(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)m. If ‖x(d)‖∞ ≤ β then go to step (3b); else,

repeat step (3a).
b) Let gsk[d] = x(d) and grt[d] = xT0 ·A0 ∈ Znq .

4. Finally, the algorithm outputs (gpk, gsk, grt), where

gpk = (A,u); gsk =
(
{gsk[d]}N−1

d=0
)
; grt =

(
{grt[d]}N−1

d=0
)
.

Figure 8.4: KeyGen algorithm of our VLR signature scheme.

• By Lemma 3.9, the distribution of each user revocation token grt[d] is statistically close to
uniform over Znq . The trivial requirement is that the revocation tokens of two different group
users must be different. In the very rare event of conflict (i.e., there exist d1, d2 ∈ {0, . . . , N−1}
such that d2 > d1 and grt[d1] = grt[d2]), the algorithm simply re-samples the key and token for
user with index d2.

8.3.2 Analysis of the scheme
We now analyse this scheme.

Efficiency and Correctness. The parameters in Table 8.1 are set so that all of the algorithms in
the VLR group signature in Section 8.3.1 can be implemented in polynomial time. Asymptotically,
the group public key has bit-size ` · Õ(n2) = logN · Õ(n2), while the group signatures have bit-size
` · Õ(n) = logN · Õ(n). The revocation check, i.e., the check against c(k)

0 in the case Ch(k) = 2,
runs in linear time in the number of revoked users, as it seems unavoidable for secure VLR group
signature schemes.

Theorem 8.3. Our VLR group signature scheme is correct with overwhelming probability.
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Sign(gpk, gsk[d],M): Let H : {0, 1}∗ → {1, 2, 3}t be a hash function, modelled as a random oracle.
Given gpk = (A,u), to sign a message M ∈ {0, 1}∗ using the secret key gsk[d] = x ∈
Secretβ(d), performs the following steps:

1. Generate a proof that the user is a certified group members and that he has not been
revoked. This is done by repeating t = ω(logn) times the basic protocol from Section 8.2
with public parameter (A,u) and prover’s witness x, and then making it non-interactive
with the Fiat-Shamir heuristic as a triple

(
{CMT(k)}tk=1, CH, {RSP(k)}tk=1

)
, where

CH =
(
{Ch(k)}tk=1

)
= H

(
M, {CMT(k)}tk=1

)
∈ {1, 2, 3}t.

2. Output the group signature:

Σ =
(
M, {CMT(k)}tk=1, {Ch(k)}tk=1, {RSP(k)}tk=1

)
. (8.6)

Verify(gpk, RL, ,M,Σ): On input gpk = (A,u), a set of tokens RL =
{
{ui}i

}
⊂ Znq whose

cardinality is at most N − 1, a message M ∈ {0, 1}∗, and a purported group signature Σ on
M , performs the following steps:

1. Parse the signature Σ as in (8.6).
2. Check if

(
{Ch(k)}tk=1

)
= H

(
M, {CMT(k)}tk=1

)
.

3. For k = 1 to t, run the verification of the protocol from Section 8.2 to check the validity
of RSP(k) with respect to CMT(k) and Ch(k). If any of the verification conditions does
not hold, then output Invalid and terminate.

4. Output Valid.

Figure 8.5: Sign, Verify and Open of our VLR group signature.

Proof. We have to prove that for all gpk = (A,B,u), gsk = ({gsk[d]}N−1
d=0 ), grt = ({grt[d]}N−1

d=0 )
outputted by KeyGen(n,N), all d ∈ {0, 1, . . . , N − 1}, and all M ∈ {0, 1}∗, we have:

Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid⇔ grt[d] 6∈ RL.

1. We first prove that: grt[d] 6∈ RL⇒ Verify(gpk, RL,Sign(gpk, gsk[d],M),M) = Valid.
Suppose that grt[d] 6∈ RL. We will show that, for each k ∈ [t], all the checks performed by the
verification algorithm hold true, except for negligible probability. For simplicity, we will not
consider the trivial checks for correct computations, e.g., the case Ch(k) = 3.

a) If Ch(k) = 1: The crucial point is to check whether ∀j ∈ {1, . . . , p} : v(k)
j ∈ SecretExt(d(k)

1 ).
Note that if x = gsk[d] is outputted by KeyGen(n,N) then x ∈ Secretβ(d), and thus, all the
vectors z1, . . . , zp outputted by the procedure WitnessDE(x) belong to the set SecretExt(d).
It then follows from the special properties of the permutation sets S and T that ∀j ∈
{1, . . . , p} : Te(k) ◦ π(k)

j (zj) ∈ SecretExt(d ⊕ e(k)). Finally, it is worth to recall that
∀j ∈ {1, . . . , p} : v(k)

j = Te(k) ◦ π(k)
j (zj), and that d(k)

1 = d⊕ e(k).
b) If Ch(k) = 2: There are two crucial checks:

i. Check if ∀ui ∈ RL : c0 6= COM
(
d2, {φj}pj=1,

(∑p
j=1 βj · sj,0

)T · A0 − uTi mod
q
)
. For each i, let αTi =

(∑p
j=1 βj · sj,0

)T · A0 − uTi ∈ Znq . Meanwhile, c(k)
0 =

125
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COM
(
d2, {φj}pj=1, α), where αT =

(∑p
j=1 βj · rj,0

)T ·A0 = αTi + uTi − grt[d]. Since
grt[d] 6∈ RL, we have grt[d] 6= uTi for all i, and thus, α 6= αi. Moreover, over
the randomness of all algorithms, the distributions of COM

(
d2, {φj}pj=1, α) and

COM
(
d2, {φj}pj=1, αi) are statistically close to uniform over Znq (this follows from

the statistically hiding property of COM). Hence, we have COM
(
d2, {φj}pj=1, α) 6=

COM
(
d2, {φj}pj=1, αi) with overwhelming probability.

ii. Check if
(∑p

j=1 βj · s
(k)
j

)T ·A∗ − uT =
(∑p

j=1 βj · r
(k)
j

)T ·A∗. This is true, because
( p∑
j=1

βj · s(k)
j

)T ·A∗ =
p∑
j=1

βj ·
(
zj + r(k)

j

)T ·A∗
=

( p∑
j=1

βj · zj
)T ·A∗ +

( p∑
j=1

βj · r(k)
j

)T ·A∗
= uT +

( p∑
j=1

βj · r(k)
j

)T ·A∗,
where the last equation follows from the fact that

(∑p
j=1 βj · zj

)T ·A∗ = xT ·A =
uT mod q.

Therefore, the verification algorithm outputs Valid with overwhelming probability, over the
randomness of all algorithms.

2. We then prove that: Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid⇒ grt[d] 6∈ RL.
Assume by contradiction that grt[d] = xT0 ·A0 mod q ∈ RL, and fix any k ∈ {1, . . . , t}. Note
that in the signing algorithm, we construct c(k)

0 so that:

c(k)
0 = COM

(
d2, {φj}pj=1,

( p∑
j=1

βj · rj,0
)T ·A0 mod q

)
On the other hand, since the verification algorithm outputs Valid, the following requirement
must satisfy (in the case Ch(k) = 2):

c(k)
0 6= COM

(
d2, {φj}pj=1,

( p∑
j=1

βj · sj,0
)T ·A0 − uTi mod q

)
As we have s(k)

j,0 = zj,0 + r(k)
j,0 and xT0 ·A0 =

(∑p
j=1 βj · zj,0

)T ·A0, we have that
(∑p

j=1 βj ·
r(k)
j,0
)T ·A0 =

(∑p
j=1 βj ·s

(k)
j,0
)T ·A0−xT0 ·A0 mod q. Thus, we obtain a contradiction. Namely,

it must be true that grt[d] 6∈ RL. This concludes the proof.

Selfless-Anonymity. We now prove that our VLR group signature scheme is selfless-anonymous.

Theorem 8.4. If COM is a statistically hiding string commitment scheme, then the VLR group
signature scheme in Section 8.3.1 is selfless-anonymous in the random oracle model.
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Proof. We define two hybrid games G0 and G1. Game G0 is the original selfless-anonymity game
(see Chapter 6.4.3). In game G1, we make the distribution of the challenger’s output independent
of the bit b ∈ {0, 1}. We then prove that these two games are statistically indistinguishable. Since
the adversary’s advantage in game G1 is 0, this implies the selfless-anonymity of our scheme.

Game G0:

1. Run KeyGen(n,N) to obtain

gpk = (A,u); gsk =
(
{gsk[d]}N−1

d=0
)
; grt =

(
{grt[d]}N−1

d=0
)
.

Set RL := ∅, Corrupted := ∅, and give gpk to the adversary A.

2. If A queries the signature on any messageM by user of index d, return Σ = Sign
(
gpk, gsk[d],M

)
.

If A queries the corruption of user of index d, set Corrupted := Corrupted ∪ {d}, and return
gsk[d]. If A queries the revocation of user d, set RL := RL ∪ {grt[d]}, and return grt[d].

3. A outputs a message M∗ and d0, d1 such that db 6∈ Corrupted and grt[db] 6∈ RL for each
b ∈ {0, 1}.

4. Pick a bit b←↩ U({0, 1}), generate a valid signature

Σ = Sign
(
gpk, gsk[db],M∗

)
=
(
M∗,

{
CMT(k)}t

k=1,
{
Ch(k)}t

k=1,
{

RSP(k)}t
k=1

)
,

and return Σ to A.

5. A can still make queries as before, but it is not allowed to ask for gsk[db] or grt[db], for each
b ∈ {0, 1}.

6. Finally A outputs a bit b′.

Game G1:
In this game, we make the following modification with respect to Game G0: In Step 4, instead of
generating a legitimate signature, we simulate the signature generation. Our simulation algorithm
is such that:

• Input: The group public key gpk =
(
A,u

)
obtained from Step 1, the set of user revocation

tokens RL obtained at the end of Step 2, and the message M∗ obtained from Step 3.

• Output: A valid group signature Σ∗ for message M∗ under gpk and RL. Moreover, Σ∗ is
independent of the bit b, and it is statistically indistinguishable from the legitimate signature
Σ in game G0.

Let A =
[
(A0)T |(A0

1)T |(A1
1)T | . . . |(A0

`)T |(A1
`)T
]T and A∗ ← MatrixExt(A). The simulation

algorithm does the following:

1. For each k ∈ {1, . . . , t}, pick a “fake” challenge Ch(k) ←↩ U({1, 2, 3}, that is a “prediction” of
what the real challenge will not be. Then pick a real challenge Ch(k) ←↩ U({1, 2, 3}) \ {Ch(k)}.
It turns out that Ch(k) is uniformly distributed in {1, 2, 3}, which satisfies the requirement
on the output of the random oracle H. Then prepare CMT(k), and the response RSP(k) to
(CMT(k), Ch(k)) as follows:

a) Case Ch(k) = 1:
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i. Use linear algebra to compute z ∈ Z(2`+1)3m
q such that zT · A∗ = uT mod q. Let

g0 = Parse(z, 1,m). If gT0 · A0 ∈ RL then repeat this step. Otherwise, compute
z(k)

1 , . . . , z(k)
p ∈ Z(2`+1)3m

q such that
∑p
j=1 βj · z

(k)
j = z mod q.

ii. Sample e(k) ←↩ U({0, 1}`), and for all j ∈ {1, . . . , p}, sample π(k)
j ←↩ U(S) and

r(k)
j ←↩ U(Z(2`+1)·3m

q ), and let r(k)
j,0 = Parse(r(k)

j , 1,m).
iii. Compute CMT(k) =

(
c(k)

0 , c(k)
1 , c(k)

2 , c(k)
3
)
∈ (Znq )4 as in (8.2), from Section 8.2.

iv. If Ch(k) = 2, then set

RSP(k) =
(
e(k), {π(k)

j }
p
j=1, {z

(k)
j + r(k)

j }
p
j=1
)
. (8.7)

If Ch(k) = 3, then set

RSP(k) =
(
e(k), {π(k)

j }
p
j=1, {r

(k)
j }

p
j=1
)
. (8.8)

b) Case Ch(k) = 2:
i. Sample d(k), e(k) ←↩ U({0, 1}`). For all j ∈ {1, . . . , p}, sample π(k)

j ←↩ U(S), and
r(k)
j ←↩ U(Z(2`+1)·3m

q ), and z(k)
j ←↩ U(SecretExt(d(k))). Let r(k)

j,0 = Parse(r(k)
j , 1,m).

ii. Compute CMT(k) =
(
c(k)

0 , c(k)
1 , c(k)

2 , c(k)
3
)
∈ (Znq )4 as in (8.2), from Section 8.2.

iii. If Ch(k) = 1, then set

RSP(k) =
(
d(k) ⊕ e(k),

{
Te(k) ◦ π(k)

j (z(k)
j )
}p
j=1

{
Te(k) ◦ π(k)

j (r(k)
j )
}p
j=1

)
. (8.9)

If Ch(k) = 3, then set

RSP(k) =
(
e(k), {π(k)

j }
p
j=1, {r

(k)
j }

p
j=1
)
. (8.10)

c) Case Ch(k) = 3:
i. Sample d(k), e(k) ←↩ U({0, 1}`). For all j ∈ {1, . . . , p} sample π(k)

j ←↩ U(S) and
r(k)
j ←↩ U(Z(2`+1)·3m

q ), and let r(k)
j,0 = Parse(r(k)

j , 1,m).
ii. For all j ∈ {1, . . . , p}, sample z(k)

j ←↩ U(SecretExt(d(k))), and let z(k)
j,0 = Parse(z(k)

j , 1,m).
If (
∑p
j=1 βj · z

(k)
j,0 )T ·A0 ∈ RL, then repeat this step.

iii. Compute CMT(k) =
(
c(k)

0 , c(k)
1 , c(k)

2 , c(k)
3
)
∈ (Znq )4, where c(k)

0 , c(k)
2 and c(k)

3 are as
in (8.2), from Section 8.2, while c(k)

1 is computed as follows:

c(k)
1 = COM

(
e(k), {π(k)

j }
p
j=1,

p∑
j=1

βj · (z(k)
j + r(k)

j )T ·A∗ − uT
)
.

iv. If Ch(k) = 1, then set

RSP (k) =
(
d(k) ⊕ e(k),

{
Te(k) ◦ π(k)

j (z(k)
j )
}p
j=1,

{
Te(k) ◦ π(k)

j (r(k)
j )
}p
j=1

)
. (8.11)

If Ch(k) = 2, then set

RSP (k) =
(
e(k), {π(k)

j }
p
j=1, {z

(k)
j + r(k)

j }
p
j=1
)
. (8.12)
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2. Program the random oracle: H
(
M∗,

{
CMT(k)}t

k=1

)
=
({
Ch(k)}t

k=1

)
.

3. Output the simulated signature Σ∗ =
(
M∗,

{
CMT(k)}t

k=1,
{
Ch(k)}t

k=1,
{

RSP(k)}t
k=1

)
.

We have the following observations on the above construction:

• For every k ∈ {1, . . . , t}, the distribution of CMT(k) is statistically close to uniform over (Znq )4.
This follows from the statistically hiding property of COM.

• The distribution of
({
Ch(k)}t

k=1

)
is uniform over {1, 2, 3}t.

• For every k ∈ {1, . . . , t}:

1. If Ch(k) = 1, the view of A on CMT(k) and RSP(k) is either (1(b)ii) and (8.9), or (1(c)iii)
and (8.11).

2. If Ch(k) = 2, the view of A on CMT(k) and RSP(k) is either (1(a)iii) and (8.7), or (1(c)iii)
and (8.12).

3. If Ch(k) = 3, the view of A on CMT(k) and RSP(k) is either (1(a)iii) and (8.8), or (1(b)ii)
and (8.10).

We remark that, in every case, RSP(k) is intentionally designed to be a valid “response” to
CMT(k) and Ch(k), and to be statistically close to that produced by Step (4) in Game G0.

These observations imply that Σ∗ is a valid group signature, i.e., Verify
(
(A,u), RL,Σ∗,M∗

)
=

Valid, and that Σ∗ is statistically indistinguishable from the legitimate signature Σ produced
by Game G0 (for a more detailed analysis, see Lemma 8.5). It then follows that Game G0 and
Game G1 are statistically indistinguishable. Moreover, Σ∗ is independent of the bit b ∈ {0, 1},
thus, the adversary’s advantage in Game G1 is 0. As a result, the adversary’s advantage in Game
G0 is negligible. In other words, our VLR group signature is selfless-anonymous.

Lemma 8.5. The signature Σ∗ outputted by Game G1 is a valid signature, and is statistically
indistinguishable from the legitimate signature Σ produced by Game G0.

Proof. Let
Σ∗ =

(
M∗,

{
CMT(k)}t

k=1,
{
Ch(k)}t

k=1,
{

RSP(k)}t
k=1

)
be the signature outputted by Game G1. First of all, we observe that:

• For every k ∈ {1, . . . , t}, the distribution of CMT(k) is statistically close to uniform over (Znq )4.
This follows from the statistical regularity property of fB and the statistically hiding property
of COM.

• The distribution of
(
Ch(1), . . . , Ch(t)) is uniform over {1, 2, 3}t.

Therefore, the distributions of
{

CMT(k)}t
k=1 and

{
Ch(k)}t

k=1 are statistically close to those of
the legitimate signature Σ. We now will show that for every k ∈ {1, . . . , t}, RSP(k) is statistically
close to that of the legitimate signature, and it is valid ‘response’ to CMT(k) and Ch(k). Indeed,
for each k ∈ [t], we have:

1. If Ch(k) = 1, then the view of A on CMT(k) =
(
c(k)

0 , c(k)
1 , c(k)

2 , c(k)
3
)
and RSP(k) is one of the

following two cases:
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a) 

c(k)
0 = COM

(
d2, {φj}pj=1,

(∑p
j=1 βj · rj,0

)T ·A0
)
,

c(k)
1 = COM

(
e(k), {π(k)

j }
p
j=1,

(∑p
j=1 βj · r

(k)
j

)T ·A∗),
c(k)

2 = COM
(
{Te(k) ◦ π(k)

j (r(k)
j )}pj=1

)
,

c(k)
3 = COM

(
{Te(k) ◦ π(k)

j (z(k)
j + r(k)

j )}pj=1
)
,

(8.13)

and

RSP(k) =
(
d(k) ⊕ e(k),

{
Te(k) ◦ π(k)

j (z(k)
j )
}p
j=1,

{
Te(k) ◦ π(k)

j (r(k)
j )
}p
j=1

)
. (8.14)

For all j ∈ {1, . . . , p}, since z(k)
j ∈ SecretExt(d(k)), it follows from (8.1) that Te(k) ◦

π
(k)
j (z(k)

j ) ∈ SecretExt(d(k) ⊕ e(k)). Thus RSP(k) satisfies the verification conditions for
the case Ch(k) = 1 (since the checks with respect to c(k)

2 and c(k)
3 obviously hold true).

Note that by construction, d(k) ⊕ e(k) is uniform in {0, 1}`; Te(k) ◦ π(k)
j (z(k)

j ) is uniform
in SecretExt(d(k) ⊕ e(k)); and Te(k) ◦ π(k)

j (r(k)
j ) is uniform in Z(2`+1)3m

q . Therefore, the
distribution of RSP(k) is identical to that of the legitimate signature.

b) 

c(k)
0 = COM

(
d2, {φj}pj=1,

(∑p
j=1 βj · rj,0

)T ·A0
)
,

c(k)
1 = COMB

(
e(k), {π(k)

j }
p
j=1,

∑p
j=1 βj · (z

(k)
j + r(k)

j )T ·A∗ − uT
)
,

c(k)
2 = COM

(
{Te(k) ◦ π(k)

j (r(k)
j )}pj=1

)
,

c(k)
3 = COM

(
{Te(k) ◦ π(k)

j (z(k)
j + r(k)

j )}pj=1
)
,

(8.15)

and RSP(k) is computed as in (8.14). The analysis for this case is similar to the above one.

2. If Ch(k) = 2, then the view of A on CMT(k) =
(
c(k)

0 , c(k)
1 , c(k)

2 , c(k)
3
)
and RSP(k) is one of the

following two cases:

a) CMT(k) is computed as in (8.13), and RSP(k) =
(
e(k), {π(k)

j }
p
j=1, {z

(k)
j +r(k)

j }
p
j=1
)
. Observe

that:
• By construction, we have gT0 ·A0 6∈ RL. The correctness of the VLR group signature

then implies that: the revocation check with respect to c(k)
0 holds true with overwhelming

probability.
• By construction, we have

(∑p
j=1 βj · z

(k)
j

)T ·A∗ = uT mod q. This implies that the
check with respect to c(k)

1 holds true.
• The check with respect to c(k)

3 obviously hold true.
Hence RSP(k) satisfies the verification conditions for the case Ch(k) = 2. Moreover, RSP(k)

is uniform over {0, 1}` × Sp ×
(
Z(2`+1)3m
q

)p, and thus, is identically distributed with that
of the legitimate signature.

b) CMT(k) is computed as in (8.15), and RSP(k) =
(
e(k), {π(k)

j }
p
j=1, {z

(k)
j + r(k)

j }
p
j=1
)
. As

above, the distribution of RSP(k) is the same as in the legitimate signature. Moreover:
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• Since we have (
∑p
j=1 βj · z

(k)
j,0 )T ·A0 6∈ RL, the revocation check with respect to c(k)

0
holds true with overwhelming probability.

• We remark that we do not have
(∑p

j=1 βj · z
(k)
j

)T ·A∗ = uT mod q, but we construct
c(k)

1 so that the check with respect to it holds true.
• The check with respect to c(k)

3 obviously hold true.

3. If Ch(k) = 3, then in any of the two views of the adversary, the verification checks with respect
to c(k)

1 , and c(k)
2 are checks for correct computations, and thus, they hold true. Moreover,

the distribution of RSP(k) is uniform over {0, 1}` × Sp ×
(
Z(2`+1)3m
q

)p, as in the legitimate
signature.

Hence, we have shown that the simulated signature Σ∗ produced by game G1 is a valid
signature of M∗ under gpk and RL, and it is statistically close to the legitimate signature Σ
produced by game G0.

Traceability. We now prove that, in the random oracle model, our VLR group signature scheme
is traceable if the SIS∞q,(`+1)·m,2β problem is hard.

Theorem 8.6. If there is a traceability adversary A with success probability ε and running time T ,
then there is an algorithm F that solves the SIS∞q,(`+1)·m,2β problem with success probability
ε′ >

(
1− (7/9)t

)
· 1

2N , and running time T ′ = 32 · T · qH/(ε− 3−t) + poly(n,N), where qH is the
number of queries to the random oracle H : {0, 1}∗ → {1, 2, 3}t.

The results of Theorem 2.3 and Theorem 8.6 imply that our scheme is traceable in the random
oracle model, based on the worst-case hardness of the SIVPγ problem (in the `2 norm), with
γ = 2β · Õ(n) = Õ(n1.5).

Proof. First, suppose that adversary A can break the computational binding property of the
commitment scheme COM with non-negligible probability. As mentioned earlier (see Section
6.1.2), we can use A to solve the SIS∞q,(`+1)·m,2β problem. Therefore, without loss of generality,
we assume that COM is computationally binding.

We construct a PPT algorithm F solving the SIS∞q,(`+1)·m,2β problem with non-negligible
probability, which works as follows:

Challenge: Algorithm F is given a uniformly random matrix

C =


C0
C1
...

C`

 ∈ Z(`+1)m×n
q ..

It wins the challenge if it can produce a non-zero vector x ∈ Z(`+1)·m such that ‖x‖∞ ≤ 2β and
xT ·C = 0 mod q.

Setup: F performs the following steps:

1. Sample vector z =
(
z0‖z1‖ . . . ‖z`

)
∈ Z(`+1)·m, where each coordinate of z is sampled from

DZ,σ. If ‖z‖∞ > β, then repeat the sampling. Otherwise, compute uT = zT ·C mod q.

2. Run TrapGen(n,m, q) algorithm ` times, and let the outputs be
(
(F1,R1), (F2,R2), . . . , (F`,R`)

)
.
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3. Pick a target index d∗ =d∗[1] . . . d∗[`]←↩ U({0, 1}`, and define

A =



A0
A0

1
A1

1
...

A0
`

A1
`


∈ Z(2`+1)m×n

q ,

where A0 = C0, and for each i ∈ {1, . . . , `}: Ad∗[i]
i = Ci and A1−d∗[i]

i = Fi.

4. Define the secret key and revocation token for user d∗ as follows:

• gsk[d∗] = (x0‖x0
1‖x1

1‖ . . . ‖x0
`‖x1

` ) ∈ Z(2`+1)·m,
where x0 = z0, ∀i ∈ {1, . . . , `}: xd

∗[i]
i = zi and x1−d∗[i]

i = 0m,
• grt[d∗] = xT0 ·A0 mod q ∈ Znq .

5. Generate the secret key and the revocation token for each user d 6= d∗, where d = d[1] . . . d[`],
as follows:

• Let d[b] (1 ≤ b ≤ `) be the first bit from the left where d[b] 6= d∗[b]. Since d 6= d∗, such b
must exist. It follows that Ad[b]

b = A1−d∗[b]
b = Fb.

• Sample ` vectors x0,xd[1]
1 , . . . ,xd[b−1]

b−1 ,xd[b+1]
b+1 , . . . ,xd[`]

` ←↩ DZm,σ, and let

(t(d))T = uT −
(
xT0 ·A0 + (

∑
i∈[`],i6=b

xd[i]
i )T ·Ad[i]

i

)
mod q.

• Sample xd[b]
b ←↩ GPVSample(Rb,Fb, t(d), σ).

• For each i ∈ {1, . . . , `}, let x1−d[i]
i = 0m, then let x(d) =

(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)·m.

If the very rare event that ‖x(d)‖∞ > β happens, then repeat the sampling. Otherwise, set
gsk[d] = x(d) and grt[d] = xT0 ·A0 mod q ∈ Znq .

6. Let gpk = (A,u), gsk =
(
{gsk[d]}N−1

d=0
)
, grt =

(
{grt[d]}N−1

d=0
)
. We note that, by construction,

the distribution of (gpk, gsk, grt) is statistically close to that of the real scheme, and the choice
of d∗ is hidden from the adversary. Algorithm F then gives (gpk, grt) to A.

Queries: Algorithm F answers the queries of A as follows:

• Corruption queries: The corruption set U is initially set to be empty. If A queries the secret
key of any user d ∈ {0, . . . , N − 1}, then F adds d to the corruption set U , and returns gsk[d].

• Signatures queries: If A queries signature of user d on arbitrary message M , then F returns
Σ = Sign

(
gpk, gsk[d],M

)
. Queries to the random oracle H are handled by consistently returning

uniformly random values in {1, 2, 3}t. For each κ ≤ qH, we let rκ denote the answer to the
κ-th query.

Forgery: Eventually, A outputs a message M∗, a set of tokens RL∗ and a non-trivial forged
signature

Σ∗ =
(
M∗, {CMTi}ti=1, {Chi}ti=1, {RSPi}ti=1

)
,
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such that Verify(gpk, RL∗,Σ∗,M∗) = valid, and the implicit tracing algorithm fails or traces to a
user outside of the coalition U \RL∗. Now algorithm F exploits the forgery as follows.

First, one can argue that A must have queried H on input
(
M∗, {CMTi}ti=1

)
, as otherwise,

the probability that (Ch1, . . . , Cht) = H
(
M∗, {CMTi}ti=1

)
is at most 3−t. Therefore, with

probability at least ε−3−t, there exists certain κ∗ ≤ qH such that the κ∗-th oracle queries involves
the tuple

(
M∗, {CMTi}ti=1

)
. Next, F picks κ∗ as the target forking point and replays A many

times with the same random tape and input as in the original run. In each rerun, for the first
κ∗ − 1 queries, A is given the same answers r1, . . . , rκ∗−1 as in the initial run, but from the κ∗-th
query onwards, F replies with fresh random values r′κ∗ , . . . , r

′

qH ←↩ U({1, 2, 3}t. The Improved
Forking Lemma of Pointcheval and Vaudenay [PV97, Lemma 7] implies that, with probability
larger than 1/2, algorithm F can obtain a 3-fork involving the tuple

(
M∗, {CMTi}ti=1

)
after less

than 32 · qH/(ε − 3−t) executions of A. Now, let the answers of F with respect to the 3-fork
branches be

r
(1)
κ∗ = (Ch(1)

1 , . . . , Ch
(1)
t ); r(2)

κ∗ = (Ch(2)
1 , . . . , Ch

(2)
t ); r(3)

κ∗ = (Ch(3)
1 , . . . , Ch

(3)
t ).

A simple calculation shows that: Pr
[
∃i ∈ {1, . . . , t} : {Ch(1)

i , Ch
(2)
i , Ch

(3)
i } = {1, 2, 3}

]
=

1 − (7/9)t. Conditioned on the existence of such index i, one parses the 3 forgeries corre-
sponding to the fork branches to obtain

(
RSP(1)

i ,RSP(2)
i ,RSP(3)

i

)
. They turn out to be 3

valid responses with respect to 3 different challenges for the same commitment CMTi. Since
COM is assumed to be computationally-binding, we can apply Lemma 8.1 to extract a vector
y =

(
y0‖y0

1‖y1
1‖ . . . ‖y0

`‖y1
`

)
∈ Z(2`+1)m satisfying yT ·A = uT mod q, yT0 ·A0 mod q 6∈ RL∗, and

y ∈ Secretβ(d) for some d ∈ {0, 1}`. Now consider two cases:

• If d 6= d∗, which happens with probability at most N−1
N , then algorithm F declares Fail and

aborts.

• If d = d∗, then let y∗ =
(
y0‖yd

∗[1]
1 ‖ . . . ‖yd

∗[`]
`

)
∈ Z(`+1)m, obtained by removing the zero-blocks

y1−d∗[1]
1 , . . . ,y1−d∗[`]

` from y. Note that, by construction, one has (y∗)T ·C = yT ·A = uT =
zT ·C mod q.

We will show that, over the randomness of all algorithms, y∗ 6= z with overwhelming probability.
Recall that Σ∗ is a valid signature such that the implicit tracing algorithm either fails or outputs
an index e 6∈ U \RL∗.

• If the tracing algorithm fails, then, in particular, one has Verify(gpk, grt[d∗],Σ∗,M∗) = Valid.
It follows from the correctness of the VLR group signature that yT0 ·A0 6= grt[d∗] = zT0 ·A0.
This implies that y0 6= z0, and thus y∗ 6= z.

• If the tracing algorithm outputs e 6∈ U \RL∗, namely the following two facts simultaneously
hold true:

Verify(gpk, grt[e],Σ∗,M∗) = Invalid and Verify(gpk, RL∗,Σ∗,M∗) = Valid.

This leads to grt[e] 6∈ RL∗, and hence e 6∈ U . Furthermore, the correctness of the revocation
check and the computational binding property of COM imply that yT0 ·A0 mod q = grt[e]. Now
consider 2 cases:

1. If A has never requested the secret key gsk[d∗], then z is unknown to A. In this case, because
z has large min-entropy given u (see Lemma 1.35), we have z 6= y∗ with overwhelming
probability.
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2. If the adversary A has requested the secret key gsk[d∗] in the Queries phase, then d∗ ∈ U .
In particular, it must be true that d∗ 6= e (because e 6∈ U) , and thus grt[d∗] 6= grt[e]. In
other words, we have yT0 ·A0 6= zT0 ·A0 mod q. This leads to y∗ 6= z.

Now let x = z − y∗ ∈ Z(`+1)m, then x 6= 0; xT · C = 0 mod q; and ‖x‖∞ ≤ ‖z‖∞ + ‖y‖∞ ≤
β + β = 2β. Algorithm F finally outputs the vector x, which is a valid solution to the given
SIS∞q,(`+1)·m,2β instance.

We observe that the probability that F does not abort is at least 1/N , and conditioned on not
aborting, it can solve the SIS∞q,(`+1)·m,2β problem with probability larger than 1/2 ·

(
1− (7/9)t

)
in time

T · 32 · qH/(ε− 3−t) + poly(n,N).

This completes the proof.
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Part Four

Cryptographic Constructions:
Multilinear Maps

Bilinear maps and multilinear maps have a lot of cryptographic applications, see [Jou00,
SOK00, BF03] and [BS03, RS09, PTT10, Rot13], respectively. But unlike bilinear maps, built
with pairings on elliptic curves, the construction of cryptographic multilinear maps was an open
problem for several years. In [BS03], Boneh and Silverberg studied the interest of such maps,
and gave two applications: multipartite Diffie-Hellman key exchange and very efficient broadcast
encryption. But they conjectured that multilinear maps will probably “come from outside the
realm of algebraic geometry.”

The GGH Graded Encoding Scheme [GGH13a], based on ideal lattices, is the first plausible
approximation to a cryptographic multilinear map. Unfortunately, using the security analysis
in [GGH13a], the scheme requires very large parameters to provide security for its underlying
“encoding re-randomization” process. Our main contributions are to formalize, simplify, in
Chapter 9, and improve, in Chapter 10, the efficiency and the security analysis of the re-
randomization process in the GGH construction. This results in a new construction that we
call GGHLite, published in a joint work with Damien Stehlé and Ron Steinfeld [LSS14]. In
particular, we first lower the size of a standard deviation parameter of the re-randomization
process of [GGH13a] from exponential to polynomial in the security parameter. This first
improvement is obtained via a finer security analysis of the “drowning” step of re-randomization,
in which we apply the Rényi divergence instead of the conventional statistical distance as a
measure of distance between distributions. Our second improvement is to reduce the number of
randomizers needed from Ω(n logn) to 2, where n is the dimension of the underlying ideal lattices.
These two contributions allow us to decrease the bit size of the public parameters from O(λ5 log λ)
for the GGH scheme to O(λ log2 λ) in GGHLite, with respect to the security parameter λ (for a
constant multilinearity parameter κ).

In Chapter 9, we recall the Garg et al. scheme from [GGH13a], and its related hard problems.
We then discuss the re-randomization step of the scheme and explain what should be expected
from it, in terms of security. This security requirement is unclear in [GGH13a] and [AGHS13].
We formulate it precisely. In Chapter 10, we give our two main contributions: the reduction of
the re-randomization drowning ratio from exponential to polynomial and the new leftover hash
lemma over the ring R = Z[x]/(xn + 1). Then we describe our GGHLite scheme and we compare
the asymptotic parameters of GGHLite with those of the original GGH scheme. Finally, we show
how to adapt the N -party non interactive Diffie-Hellman key exchange, such that our security
result on GGHLite applies.
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Chapter 9

The GGH Graded Encoding Scheme and the
Security of its Rerandomization Procedure

Boneh and Silverberg [BS03] defined a cryptographic κ-multilinear map e as a map from G1× . . .×
Gκ to GT , all cyclic groups of order p, which enjoys three main properties: first, for any elements
gi ∈ Gi for i ≤ κ, j ≤ κ and α ∈ Zp, we have e(g1, . . . , α·gj , . . . , gκ) = α·e(g1, . . . , gκ); second, the
map e is non-degenerate, i.e., if the gi’s are generators of their respective Gi’s then e(g1, . . . , gκ)
generates GT ; and third, there is no efficient algorithm to compute discrete logarithms in any of
the Gi’s. Multilinear maps have a lot of cryptographic applications [BS03, RS09, PTT10, Rot13],
but the construction of cryptographic multilinear maps was an open problem for several years. In
2013, Garg, Gentry and Halevi [GGH13a] introduced the first “approximate” multilinear maps
construction, based on ideal lattices, and the powerful notion of graded encoding scheme. Based on
their work, Coron, Lepoint and Tibouchi [CLT13] recently described an alternative construction
of graded encoding scheme.

In this chapter, we first describe the GGH multilinear maps construction from [GGH13a], then
its underlying computational problems, and the strong re-randomization security requirement
from [GGH13a]. Then we introduce our canonical computational problems and formulate our
precise security goal for re-randomization with respect to the canonical problems. This security
requirement is unclear in [GGH13a] and [AGHS13]. We formulate it precisely. Finally we give
the implicit re-randomization security reduction of the GGH scheme.

9.1 Graded encoding scheme

In this section, we give the definition of a graded encoding scheme, and describe the adaptation
of the application of [BS03]: the N -party non interactive Diffie-Hellman key exchange. Then we
recall the hardness assumption associated to the security of this scheme.

9.1.1 Definition

We first define a graded encoding scheme.

Definition 9.1 ([GGH13a, Definition 2]). A κ-graded encoding system consists of a ring R and
a system of sets S = {S(α)

i ⊂ {0, 1}∗ : α ∈ R, 0 ≤ i ≤ κ}, with the following properties:

1. For every fixed index i, the sets {S(α)
i : α ∈ R} are disjoint.
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2. There are an associative binary operation + and a self-inverse unary operation − such that
for every α1, α2 ∈ R, every index i ≤ κ and every u1 ∈ S(α1)

i and u2 ∈ S(α2)
i , it holds that:

u1 + u2 ∈ S(α1+α2)
i and − u1 ∈ S(−α1)

i ,

where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation × such that for every α1, α2 ∈ R, every i1, i2 such
that i1 + i2 ≤ κ, and every u1 ∈ S(α1)

i1
and u2 ∈ S(α2)

i2
, it hold that:

u1 × u2 ∈ S(α1·α2)
i1+i2 ,

where α1 · α2 is multiplication in R and i1 + i2 is an integer addition.

A graded encoding scheme uses the notion of encoding level: the plaintext is a level-0 encoding,
from the level-0 encoding one can construct level-i encoding of the same element until κ, where κ
is called the multilinearity parameter. But given a level-i encoding, one cannot come back and
find a level-j encoding for j < i for the same element. The encodings are both additively and
multiplicatively homomorphic, up to a limited number of operations. More precisely, a product
of i level-1 encodings is a level-i encoding. One can multiply any number of encodings up to κ,
instead of exactly κ in the ideal multilinear maps of [BS03]. We now construct it with the
following procedures.

InstGen(1λ, 1κ)→ (params,pzt). This algorithm takes λ and κ as inputs and outputs (params,pzt),
where params is a description of the graded encoding system as above, and pzt is a zero-
testing parameter at level κ.

Samp(params)→ a. The ring sampler algorithm takes as input the parameters params and outputs
a “level-0 encoding” a ∈ S(α)

0 for a nearly uniform element α ∈ R .

Enci(params, a)→ u. The encoding algorithm takes as inputs the parameters params, a level i
and a level-0 encoding a ∈ S

(α)
0 of an element α ∈ R. It outputs the level-i encoding

u ∈ S(α)
i for the same α.

Add(params, i, u1, u2)→ u. The addition algorithm takes as inputs the parameters params, a
level i, and two level-i encodings u1 ∈ S(α1)

i and u2 ∈ S(α2)
i . It outputs a level-i encoding

u1 + u2 ∈ S(α1+α2)
i .

Neg(params, i, u1)→ u. The negation algorithm takes as inputs the parameters params, a level i,
and a level-i encoding u1 ∈ S(α1)

i . It outputs a level-i encoding −u1 ∈ S(−α1)
i .

Mult(params, i1, i2, u1, u2)→ u. The multiplication algorithm takes as inputs the parameters
params, two levels i1 and i2 such that i1 + i2 ≤ κ, and a level-i1 (resp. i2) encoding
u1 ∈ S(α1)

i1
and u2 ∈ S(α2)

i2
. It outputs a level-(i1 + i2) encoding u1 × u2 ∈ S(α1·α2)

i1+i2 .

isZero(params,pzt, u)→ {0, 1}. The zero-test algorithm takes as inputs the parameters params,
the zero-testing parameter pzt and a level-κ encodings u ∈ S(α)

κ . It outputs 1 for every
u ∈ S(0)

κ , and 0 otherwise, except with negligible probability:

Pr
α∈R

[
∃u ∈ S(α)

κ s.t. isZero(params,pzt, u) = 1
]

= negligible(λ).
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Ext(params,pzt, u)→ s. The extraction algorithm takes as inputs the parameters params, the
zero-testing parameter pzt and a level-κ encodings u ∈ S(α)

κ . It outputs s such that:

1. For a randomly chosen a← Samp(params), and two encodings of a: u1 ← Encκ(params, a)
and u2 ← Encκ(params, a) then:

Pr [Ext(params,pzt, u1) = Ext(params,pzt, u2)] ≥ 1− negligible(λ).

2. The distribution {Ext(params,pzt, u) : a ← Samp(params), u ← Encκ(params, a)} is
nearly uniform over {0, 1}λ.

The zero-testing procedure allows to test if a level-κ encoding is an encoding of 0, and also to
test if two encodings u1, u2 ∈ Sκ encode the same element. This definition allows false positives
for this procedure (with negligible probability) but no false negatives. The extraction procedure
extracts a “canonical” representation of a ring element from their level-κ encoding. It is also a
probabilistic procedure which may fail with negligible probability.

9.1.2 One-round N-party Diffie-Hellman key exchange
We recall the construction given by [GGH13a] to adapt the N -party Diffie-Hellman key exchange
using an encoding scheme with κ = N − 1. The principle of the key exchange is that each party
shares some public parameters and starts by sampling a secret key. Then each party publishs a
public element (computed with its secret key), and given all the public elements and his secret,
each party must be able to compute a shared secret key. The consistency requirement is that all
parties must generate the same shared secret key.

• Setup Setup(1λ, 1N ): Given security parameter λ and number of parties N , run
InstGen(1λ, 1N−1) for the graded encoding scheme to get (par, pzt) and output protocol public
parameters (par, pzt).

• Publish Publish(par, pzt, i): The ith party runs the level-0 encoding sampler to generate a
random secret key ei = Samp(par), and publishes a corresponding level-1 public key ui =
enc1(par, ei).

• KeyGen KeyGen(par, pzt, j, ej , {ui}i6=j): The jth party computes a level-(N − 1) encoding
vj = ej ·

∏
i6=j ui of the product

∏
i ei, and computes the key Kj = ext(par, pzt, vj).

Figure 9.1: The N -party Diffie-Hellman key exchange protocol.

The consistency requirement follows from the agreement property of the extraction procedure.
As proven in [GGH13a], the security follows from the randomness property of the extraction
procedure and from the GDDH assumption that we will now define.

9.1.3 Hardness assumption: GDDH
The hardness assumption of this scheme is associated to an extension of the discrete logarithm
and the Decisional Diffie-Hellman (DDH) assumptions in multilinear group. The security game
asks to distinguish between a level-κ encoding of a random element, and a level-κ encoding of the
product of κ+ 1 elements, knowing the level-1 encoding of all these elements. Note that with all
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the level-1 encodings, it is easy to compute a “level-κ+ 1” encoding of the product by multiplying
them, but hard to find a level-κ encoding.

Given the security game of Figure 9.2, the Graded Decisional Diffie-Hellman (GDDH) assump-
tion is that the two following distributions are computationally indistinguishable:

DGDDH = {(params, pzt, {ui}i, u∗)} and DRand = {(params, pzt, {ui}i, û)}.

Given parameters λ, κ, proceed as follows:

1. (params,pzt)← InstGen(1λ, 1κ).
2. For i = 0, . . . , κ:

- Choose ai ← Samp(params),
- Set ui ← Enc(params, 1, ai).

3. Set a∗ = [
∏κ
i=0 ai]q,

4. Set â← Samp(params),
5. Set u∗ ← Enc(params, κ, a∗).
6. Set û← Enc(params, κ, â).

Figure 9.2: Graded Decisional Diffie Hellman security game.

9.2 The GGH scheme

9.2.1 Description of the scheme
We recall the GGH scheme in Figure 9.3.

If we come back to the definition of cryptographic multilinear maps, the authors of [GGH13a]
notice that α · gi can be viewed as an “encoding” of the “plaintext” α ∈ Zq. They consider the
polynomial rings R = Z[x]/(xn + 1) and Rq = R/qR (replacing the exponent space Zp). They
generate a small secret g ∈ R and let I = (g) be the principal ideal over R generated by g.
They also sample a uniform z ∈ Rq which stays secret. The “plaintext” is an element of R/I,
and is encoded via a division by z in Rq: to encode a coset of R/I, return [c/z]q, where c is
an arbitrary small coset representative. In practice, as g is hidden, they give another public
parameter y, which is an encoding of 1, and the encoding of the coset is computed as [e · y]q,
where e is a small coset representative (possibly different from c). But, as opposed to multilinear
maps, their graded encoding scheme uses the notion of encoding level: the plaintext e is a level-0
encoding, the encoding [c/z]q is a level-1 encoding, and at level i, an encoding of e+ I is given
by [c/zi]q = [e · yi]q. For 0 ≤ 1 ≤ κ, the sets of Definition 9.1 are such that:

S
(e)
i = {c/zi ∈ Rq : c ∈ e+ I, ‖c‖ ≤ q1/8},

To ensure the security of the cryptographic constructions, the second main difference with
multilinear maps is the randomization of the encodings. The principle is as follows:

• First some level-1 encodings of 0, called {xj = [bj/z]q}j≤mr , are given as part of the public
parameters;
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• Instance generation InstGen(1λ, 1κ): Given security parameter λ and multilinearity param-
eter κ, determine scheme parameters n, q, mr, σ, σ′, `g−1 , `, based on the scheme analysis.
Then proceed as follows:

• Sample g ←↩ DR,σ until ‖g−1‖ ≤ `g−1 and I = (g) is a prime ideal. Define encoding
domain Rg = R/(g).
• Sample z ←↩ U(Rq).
• Sample a level-1 encoding of 1: set y = [a · z−1]q with a←↩ D1+I,σ′ .

• For k ≤ κ, sample mr level-k encodings of 0: set x(k)
j = [b(k)

j · z−k]q with b(k)
j ←↩ DI,σ′ for

all j ≤ mr.
(Note that a = 1 + gry and b(k)

j = gr
(k)
j for some ry, r

(k)
j ∈ R.)

• Sample h←↩ DR,
√
q and define the zero-testing parameter pzt = [hg zκ]q ∈ Rq.

• Return public parameters par = (n, q, y, {x(k)
j }j≤mr,k≤κ) and pzt.

• Level-0 sampler samp(par): Sample e←↩ DR,σ′ and return e.
(Note that e = eL + geH for some unique coset representative eL ∈ Pg, and some eH ∈ R.)

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par:

– Encode e at level k: Compute u′ = [e · yk]q.

– Re-randomize: Sample ρj ←↩ χk for j ≤ mr and return u = [u′ +
∑mr
j=1 ρjx

(k)
j ]q.

(Note that u′ = [c′/zk]q with c′ ∈ eL + I and u = [(c′ +
∑
j ρjb

(k)
j )/zk]q.)

• Adding encodings add: Given level-k encodings u1 = [c1/zk]q and u2 = [c2/zk]q:

– Return u = [u1 + u2]q, a level-k encoding of [c1 + c2]g.

• Multiplying encodings mult: Given level-k1 encoding u1 = [c1/zk1 ]q and a level-k2 encoding
u2 = [c2/zk2 ]q:

– Return u = [u1 · u2]q, a level-(k1 + k2) encoding of [c1 · c2]g.

• Zero testing at level κ isZero(par, pzt, u): Given a level-κ encoding u = [c/zκ]q, return 1 if
‖[pztu]q‖∞ < q3/4 and 0 else.
(Note that [pzt · u]q = [hc/g]q.)

• Extraction at level κ ext(par, pzt, u): Given a level-κ encoding u = [c/zκ]q, return v =
MSB`([pzt · u]q).
(Note that if c = [c]g + gr for some r ∈ R, then v = MSB`(hg ([c]g + gr)) = MSB`(hg [c]g + hr),
which is equal to MSB`(hg [c]g), with probability 1− λ−ω(1).)

Figure 9.3: The GGH graded encoding scheme.
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• Then, to randomize a level-1 encoding u′ = [e · y]q, one outputs:

u = [u′ +
∑
j

ρjxj ]q = [c/z]q,

with c = c′ +
∑
j ρjbj , where the ρj ’s are sampled from a discrete Gaussian distribution over Z

with deviation parameter σ∗.

In Figure 9.3, we present this scheme in a slightly more general form than [GGH13a]: we leave
as a parameter the distribution χk of the re-randomization coefficients ρj for a level-k encoding
(for any k ≤ κ). In the original GGH scheme, we have χk = DZ,σ∗

k
for some σ∗k’s, i.e., the ρj ’s are

integers sampled from a discrete Gaussian distribution.
The aim of isZero is to test whether the input u = [c/zκ]q is a level-κ encoding of 0 or not,

i.e., whether c = g · r for some r ∈ R. The following conditions (explained in Section 9.2.2) ensure
correctness of isZero, when χk = DZ,σ∗

k
(for all k ≤ κ): the first one implies that false negatives do

not exist (if u is level-κ encoding of 0, then isZero(u) returns 1), whereas the second one implies
that false positives occur with negligible probability.

q > max((n`g−1)8, ((mr + 1) · n1.5σ∗1σ
′)8κ) (9.1)

q > (2nσ)4. (9.2)

The aim of ext is to extract a quantity from its input u = [c/zκ]q that depends only on the
encoded value [c]g, but not on the randomizers. To avoid trivial solutions, one requires that
this extracted value has min-entropy ≥ 2λ (if that is the case, then one can obtain a uniform
distribution on {0, 1}λ, using a strong randomness extractor). The following two inequalities
(also explained in Section 9.2.2) guarantee these properties, when χk = DZ,σ∗

k
(for all k). The

first one implies that εext = Pr[ext(u) 6= ext(u′)] is negligible, when u and u′ encode the same
value [c]g, whereas the second one provides large min-entropy.

1/4 ln q − ln( 2n
εext

) ≥ ` ≥ ln(8nσ). (9.3)

9.2.2 Correctness analysis of the scheme
We now explain how to derive these correctness conditions. For this, we need the following result.

Lemma 9.2 (Adapted from [GGH13a, Lemma 4]). Let g ∈ R such that I = (g) is a prime ideal
in R, let c ∈ R with ‖c‖ < q1/8 and h ∈ R with ‖h‖ <

√
nq1/2 and c, h /∈ I and q > (2tnσ)4 for

some t ≥ 1. Then ‖[h · c/g]q‖∞ > t · q3/4.

Correctness of zero-testing. To satisfy the “no false negatives” zero-testing condition, we need
‖pztu‖∞ < q3/4 for all valid level-κ encodings u = [c/zκ]q ∈ S(0)

κ of zero. As pzt = [hg zk]q, we
have

‖[pztu]q‖∞ = ‖[h · c
g

]q‖∞ = ‖hc/g‖∞ ≤ ‖h‖ · ‖c‖ · ‖g−1‖
√
n.

To satisfy ‖pztu‖∞ < q3/4, it therefore suffices to have ‖c‖ ≤ q1/8 and ‖h‖ · q1/8 · `g−1 ·
√
n < q3/4.

• As ‖c‖ = ‖
∏κ
i=1 ui‖ ≤

√
n
κ−1 · (maxi ‖ui‖)κ with ‖ui‖ = ‖ei +

∑
j ρjb

(1)
j ‖, we use the fact that

‖ei‖ ≤ σ′
√
n, ‖ρj‖ ≤ σ∗1

√
n (by Lemma 1.36), then:

‖ui‖ ≤ ‖ei‖+mr max
j
|ρj | · ‖b(1)

j ‖ ≤ (mr + 1) · nσ∗1σ′.

As a consequence, then condition ‖c‖ ≤ q1/8 is satisfied if q > ((mr + 1) · n1.5σ∗1σ
′)8κ.
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• As ‖h‖ ≤
√
nq1/2, the condition ‖h‖ · q1/8 · `g−1 ·

√
n < q3/4 is satisfied if q > (`g−1n)8

Then these two conditions are satisfied and ‖pztu‖∞ < q3/4 if:
q > max

(
(n`g−1)8, ((mr + 1) · n1.5σ∗1σ

′)8κ) . (9.4)
To satisfy the “negligible probability false positives” zero-testing condition, we need ‖pztu‖∞ >

q3/4, for any level-κ encoding u = [c/zκ]q ∈ S(eL)
κ of eL ∈ Rg, except with negligible probability

εzt = λ−ω(1) over the uniformly random choice of eL ∈ Rg. By Lemma 9.2 with t = 1, the fact
that I is prime and that ‖c‖ < q1/8, it follows that ‖pztu‖∞ > q3/4 for any encoding of a non-zero
eL /∈ I (and hence εzt = Pr[eL = 0] = 1/|Rg| = O(2−n)), assuming the condition

q > (2nσ)4. (9.5)
We have h 6∈ I, except with probability O(1/|R/I|) over the choice of h, by Lemma 1.33,

when q = ω(nσ)2. Note that thanks to the remark just after Lemma 10.1, we have |R/I| ≥
σn(rot(g))n ≥ ( 1√

n·‖g−1‖ )
n. Now, by the InstGen rejection test, we have ‖g−1‖ ≤ `g−1 . Condition

(10.1) finally implies that |R/I| ≥ 2n when n ≥ 8.

Correctness of extraction. To satisfy the extraction min-entropy condition, we need that the
min-entropy of [pztu]q is ≥ 2λ. Indeed, any two level-κ encodings u = [(eL + gr)/zκ]q and
u′ = [(e′L + gr′)/zκ]q of different elements eL 6= e′L ∈ Rg have different extracted elements
MSB`(pztu) 6= MSB`(pztu′) as long as:

‖[pztu]q − [pztu′]q‖∞ = ‖[pzt(u− u′)]q‖∞ > 2L−`+1.

If that condition is satisfied, then the min-entropy is log2 |R/I|. As |R/I| ≥ 2n for n ≥ 8 (see
above), we have log2 |R/I| ≥ n ≥ 2λ. We now prove that the condition ‖[pzt(u−u′)]q‖∞ > 2L−`+1

is satisfied. Since u− u′ is an encoding of a non-zero element eL − e′L ∈ Rg this follows, similarly
to the zero-testing correctness above, from Lemma 9.2 with t satisfying tq3/4 > 2L−`+1. The
latter holds with t = q1/42−`+2. The condition t > 1 is satisfied by the upper bound (9.7) on `
below, while the condition q > (2tnσ)4 is satisfied by the lower bound

` > ln(8nσ). (9.6)
To satisfy the “negligible failure probability” extraction condition, we need:

MSB`(pztu) = MSB`(pztu′),
for any two level-κ encodings u = [(eL + gr)/zκ]q and u′ = [(eL + gr′)/zκ]q of the same element
eL ∈ Rg, except with negligible probability εext over the uniformly random choice of eL ∈ Rg.
Since [pztu]q = [heL/g]q + hr and [pztu′]q = [heL/g]q + hr′ with ‖hr‖∞, ‖hr′‖∞ < q3/4, we can
only have MSB`(pztu) 6= MSB`(pztu′) if heL/g falls within infinity distance < q3/4 of a multiple
of 2L−`+1, where L = blog qc. Under the heuristic assumption that each coefficient of [heL/g]q is
uniformly random in Zq over the choice of eL (this heuristic assumption is reasonable from the
point of view of entropy; indeed, by the min-entropy condition above, the entropy of [heL/g]q ∈ Rq
over the choice of eL uniformly in R/I, is at least n bit, and this exceeds log2 q because of the
lattice rule of thumb security requirement n = Ω(λ log q) in Eq. (10.12)), we have by a union
bound over all n coefficients that this “bad” event occurs with probability:

p ≤ 2nq3/4

2L−`+1 .

To make this probability ≤ εext, it suffices to take

` ≤ 1
4 ln q − ln( 2n

εext
). (9.7)
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9.3 Security of the GGH scheme

We now describe the related hard problems and the security requirement for this scheme.

9.3.1 The GDDH, GCDH and Ext-GCDH problems
The computational problems that are required to be hard for the GGH scheme depend on the
application. Here we recall the definitions of the Graded Decisional and Computational Diffie-
Hellman (GDDH and GCDH) problems from [GGH13a]. We introduce another natural variant
that we call the Extraction Graded Computational Diffie-Hellman (Ext-GCDH), in which the
goal is to compute the extracted string of a Diffie-Hellman encoding.

We first define the GGH security experiment in Figure 9.4.

Given parameters λ, n, q,mr, κ, σ
′, proceed as follows:

1. Run InstGen(1n, 1κ) to get
par = (n, q, y, {x(k)

j }j,k) and pzt.

2. For i = 0, . . . , κ:
- Sample ei ←↩ DR,σ′ , fi ←↩ DR,σ′ ,
- Set ui = [ei · y +

∑
j ρijxj ]q

with ρij ←↩ χ1 for all j.

3. Set u∗ = [
∏κ
i=1 ui]q.

4. Set vC = [e0u
∗]q.

5. Sample ρj ←↩ χκ for all j,
set vD = [e0u

∗ +
∑
j ρjx

(κ)
j ]q.

6. Set vR = [f0u
∗ +

∑
j ρjx

(κ)
j ]q.

Figure 9.4: The GGH security experiment.

Definition 9.3 (GCDH/Ext-GCDH/GDDH). The problems GCDH, Ext-GCDH and GDDH
are defined as follows with respect to experiment of Figure 9.4:1

• κ-graded CDH problem (GCDH): On inputs par, pzt and the ui’s of Step 2, output a
level-κ encoding of

∏
i≥0 ei + I, i.e., w ∈ Rq such that ‖[pzt(vC − w)]q‖ ≤ q3/4.

• Extraction κ-graded CDH problem (Ext-GCDH): On inputs par, pzt and the ui’s
of Step 2, output the extracted string for a level-κ encoding of

∏
i≥0 ei + I, i.e., w =

ext(par, pzt, vC) = MSB`([pzt · vC ]q).

• κ-graded DDH problem (GDDH): Distinguish between vD and vR, i.e., between the
distributions DDDH = {par, pzt, (ui)0≤i≤κ, vD} and DR = {par, pzt, (ui)0≤i≤κ, vR}.

1Note that we use a slightly different process from [GGH13a], by adding a re-randomization to the element vD .
Without it, there exists a “division attack” against GDDH.
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Ext-GCDH is at least as hard as GDDH: given vx with x ∈ {DDH,R}, use the Ext-GCDH
oracle to compute w = ext(par, pzt, vC).

9.3.2 The GGH re-randomization security requirement
The encoding re-randomization step in the GGH scheme is necessary for the hardness of the
problems above. In [GGH13a], Garg et al. imposed the informal requirement that the re-
randomization process “erases” the structure of the input encoding, while preserving the encoded
coset. In setting parameters, they interpreted this requirement in the following natural way.

Definition 9.4 (Strong re-randomization security requirement). We let:
∗ u′ = [c′/zk]q, with c′ = eL + gr′ be a fixed level-k encoding of eL ∈ Rg,
∗ u = [u′ +

∑
j ρjx

(j)
k ]q = [c/zk]q with c = eL + gr and r = r′ +

∑
j ρjr

(k)
j be the re-randomized

encoding, with ρj ←↩ χk for j ≤ mr.
∗ D

(k)
u (eL, r′) denote the distribution of u (over the randomness of ρj ’s), parameterized by (eL, r′),

∗ D
(k)
can(eL) denote some canonical distribution, parameterized by eL, that is independent of r′.

Then we say that the strong re-randomization security requirement is satisfied at level k with
respect to D(k)

can(eL) and encoding norm γ(k) if

∆(D(k)
u (eL, r′), D(k)

can(eL)) ≤ 2−λ

for any u′ = [c′/zk]q with ‖c′‖ ≤ γ(k).

The authors of [GGH13a] argued that with χk = DZ,σ∗
k
(for k ≤ κ) and a “drowning ratio”

σ∗k/‖r′‖ exponential in security parameter λ, the distribution D
(k)
u (eL, r′) is within negligible

statistical distance to the canonical distribution D
(k)
can(eL) = [DI+eL,σ∗k(B(k))T · z−k]q. This

requirement may be stronger than needed. Accordingly, we now clarify the desired goal.

9.3.3 Our security goal: canonical assumptions
We formalize a re-randomization security goal to capture a security guarantee against “statistical
correlation” attacks on GCDH/Ext-GCDH/GDDH. We define canonical variants cGCDH/Ext-
cGCDH/cGDDH of GCDH/Ext-GCDH/GDDH, using Figure 9.6.

The main difference with Figure 9.5 is that the encodings ui = [ci/z]q of the hidden elements ei,
are sampled from a canonical distribution D

(1)
can(ei), parameterized by ei, whose statistical

parameters are independent of the encoded coset ei, so that it is “by construction” immune
against statistical correlation attacks. In particular, in the canonical distribution D(1)

can(ei) that
we use, ci is sampled from a discrete Gaussian distribution DI+ei,σ∗1 (B(1))T (over the choice of
the randomization, for a fixed ei), whose statistical parameters such as center (namely 0) and
deviation matrix σ∗1(B(1))T are independent of ei. The only dependence this distribution has on
the encoded element ei is via its support I + ei.

We believe the canonical problems are cleaner and more natural than the non-canonical
variants, since they decouple the re-randomization aspect from the rest of the computational
problem. As a further simplification, the canonical variants also have their level-0 elements ei
distributed uniformly on Rg (rather than as reductions mod I of Gaussian samples).

Definition 9.5 (cGCDH/Ext-cGCDH/cGDDH). The canonical problems cGCDH, Ext-cGCDH
and cGDDH are defined as follows with respect to the experiment of Figure 9.6 and canonical
encoding distribution D(k)

can(e) (parameterized by encoding level k and encoded element e):
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Given parameters λ, n, q,mr, κ, σ
′,

proceed as follows:

1. Run InstGen(1n, 1κ) to get
par = (n, q, y, {x(k)

j }j,k) and pzt.

2. For i = 0, . . . , κ:
- Sample ei ←↩ DR,σ′ , fi ←↩ DR,σ′ ,
- Set ui = [ei · y +

∑
j ρijxj ]q

with ρij ←↩ χ1 for all j.

3. Set u∗ = [
∏κ
i=1 ui]q.

4. Set vC = [e0u
∗]q.

5. Sample ρj ←↩ χκ for all j,
set vD = [e0u

∗ +
∑
j ρjx

(κ)
j ]q.

6. Set vR = [f0u
∗ +

∑
j ρjx

(κ)
j ]q.

Figure 9.5: The GGH security experiment.

Given parameters λ, n, q,mr, κ, (σ∗k)k≤κ,
proceed as follows:

1. Run InstGen(1n, 1κ) to get
par = (n, q, y, {x(k)

j }j,k) and pzt.
Write x(k)

j = [b(k)
j z−k]q and

B(k) = [b(k)
1 , · · · , b(k)

mr ] ∈ Imr .

2. For i = 0, . . . , κ:
- Sample ei ←↩ U(Rg), fi ←↩ U(Rg),
- Set ui = [ciz−1]q ←↩ D(1)

can(ei)
with ci ←↩ DI+ei,σ∗1 (B(1))T .

3. Set u∗ = [
∏κ
i=1 ui]q.

4. Set vC = [e0u
∗]q.

5. Set vD = [cD · z−κ]q ←↩ D(κ)
can(

∏κ
i=0ei), with

cD←↩ DI+
∏κ

i=0
ei,σ∗κ(B(κ))T .

6. Set vR=[cR · z−κ]q ←↩ D(κ)
can(f0

∏κ
i=1ei), with

cR←↩ DI+f0
∏κ

i=1
ei,σ∗κ(B(κ))T .

Figure 9.6: The canonical security experiment.

• cGCDH: On inputs par, pzt and the ui’s, output w ∈ Rq such that ‖[pzt(vC − w)]q‖ ≤ q3/4.

• Ext-cGCDH: On inputs par, pzt and the ui’s, output:
w = ext(par, pzt, vC) = MSB`([pzt · vC ]q).

• cGDDH: Distinguish between

DDDH = {par, pzt, (ui)0≤i≤κ, vD} and DR = {par, pzt, (ui)0≤i≤κ, vR}.

Remark 9.6. One could consider alternative definitions of natural canonical encoding distributions
besides the one we adopt here. For instance, our results in the Chapter 10 can also be adapted
to hold for the canonical distribution D

(1)
can(ei) of ui = [ci/z]q in which ci is sampled from

DI+ei,σ∗1 (B(1))T ,ei . In this alternative, although the center of ci’s distribution depends on ei, the
distribution of the randomizer r in the representation ci = ei + g · r, is independent of ei. Our
results can also be adapted to apply to this variant of the problem.

Given the canonical problems on whose hardness we wish to rely, our security goal for re-
randomization with respect to the GCDH (resp. Ext-GCDH/GDDH) problems can now be easily
formulated: hardness of the latter should be implied by hardness of the former.

Definition 9.7 (Re-randomization security goal). We say that the re-randomization security
goal is satisfied with respect to GCDH (resp. Ext-GCDH/GDDH) if any adversary against
GCDH (resp. Ext-GCDH/ GDDH) with run-time T = O(2λ) and advantage ε = Ω(2−λ) can
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be used to construct an adversary against cGCDH (resp. Ext-cGCDH/cGDDH) with run-time
T ′ = poly(T, λ) and advantage ε′ = Ω(poly(ε, λ)).

9.3.4 Review of GGH re-randomization security reduction
To set the background for our result, we now show that Definition 9.4 implies that our security
goal is reached: We review the re-randomization security reduction from the non-canonical
problems to their canonical variant, that is implicit in the work of Garg et al (GGH) [GGH13a].
For simplicity, we explain it for the case of Ext-GCDH, although it holds similarly for the other
variants GCDH and GDDH.

First step. The first step is to show that re-randomization security goal in Definition 9.7 is
satisfied if the Strong Re-randomization requirement in Definition 9.4 is satisfied. Let A denote
the (T, ε) adversary against problem Ext-GCDH, we define the following games:

Game1: In this game, ei ←↩ DR,σ′ , u′i = [ei · y]q = [(ei,L + gr′i)/z]q, and ui = [u′i +
∑
j ρijxj ]q

where ρij ←↩ DR,σ∗1
, for i ∈ {0, . . . , κ} and j ∈ {1, . . .mr}.

Game3: In this game, ei ←↩ DR,σ′ and ui = [(ei,L + gri)/z]q with ei,L = [ei]g and gri ←↩ D(1)
can =

DI,σ∗1 (B(1))T .

Note that the only difference between the two games is the distribution of the randomizer
ri in both games: in Game1, we have ri = r′i +

∑
j ρijr

(1)
j , which has the distribution Dr in

Definition 9.4 (over the randomness of ρij), while in Game3, we have ri sampled from the canonical
distribution D

(1)
can. Hence, by the strong re-randomization requirement in Definition 9.4, the

statistical distance between the ri’s in the two games is ≤ 2−λ. Therefore, we have that the
statistical distance between the distributions of the view of A in the two games is at most
(κ+ 1) · 2−λ.

Finally, we define:

Game4: This game denotes the Ext-cGCDH game.

The only difference between Game3 and Game4 is the distribution of ei,L: in Game3, we have
ei,L = [ei]g with ei sampled from DR,σ′ , whereas in Game4 we have ei,L sampled uniformly
from Rg. By Lemma 1.33, if σ′ ≥ ηεe(I), then the statistical distance between the distributions
of ei,L in both games is ≤ 2εe, so that the statistical distance between the view of A in both
games is O(κ · εe). By Lemma 1.27, the latter condition is satisfied if

σ′ = ‖g‖ · Ω
(√

log(nε−1
e )
)
≥ σ
√
n · Ω

(√
log(nε−1

e )
)
. (9.8)

Second step. The second step is to show that the strong re-randomization requirement in
Definition 9.4 is satisfied, i.e., that the distribution D(1)

can of ri in Game3 is statistically close to
the distribution of ri in Game1. To do so, consider the intermediate game Game2,

Game2: In this game, the distribution of the term
∑
j ρijr

(1)
j is replaced byD(1)

can, so that ri = r′i+w,
where w ←↩ D(1)

can.

There are now two changes to analyze:

147



9. The GGH Graded Encoding Scheme and the Security of its Rerandomization
Procedure

• For the change from Game1 to Game2, the authors of [GGH13a] apply a discrete Gaussian variant
of the leftover hash Lemma from [AGHS13] (see Theorem 10.7 in Section 10.2.1) to show that
∆(
∑
j ρijr

(1)
j : ρij ←↩ DZ,σ∗1 ;DI,σ∗1 (B(1))T ) ≤ 2ερ if mr = Ω(n logn) and σ∗1 = Ω(mn2 log(1/ερ)).

• For the change from Game2 to Game3, the authors of [GGH13a] argue (informally) that if the
randomizer deviation parameter σ∗1 is sufficiently large to “drown” the offset r′i ∈ I by an
exponential ratio, i.e., if σ∗/‖r′i‖ ≥ 2λ, then the statistical distance between r′i +DI,σ∗1 (B(1))T

and DI,σ∗1 (B(1))T is O(‖r′i‖/σ∗) ≤ O(2−λ).

Overall, the statistical distance between the view ofA in Game1 and Game4 is ∆(Game1,Game4) =
O(κ · (ερ + ‖r′i‖/σ∗ + εe)). Therefore, algorithm A solves Ext-cGCDH with run-time T ′ = T and
success probability

ε′ ≥ ε−O(κ · (ερ + ‖r′i‖/σ∗ + εe)), (9.9)

so that the re-randomization security goal of Definition 9.7 is satisfied if

‖r′i‖/σ∗, ερ, εe = O(κ−1 · 2−λ), (9.10)

and mr = Ω(n logn) and σ′ = ‖g‖ · Ω
(√

log(nε−1
e )
)
.

Our main contribution in the next Chapter is to improve the above analysis, and show how to
satisfy the security goal with much better parameters, namely ‖r′i‖/σ∗, ερ, εe = O(κ−1).
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Chapter 10

GGHLite: More Efficient Multilinear Maps
from Ideal Lattices

This chapter is a joint work with Damien Stehlé and Ron Steinfeld, published in [LSS14], where
we study and improve the GGH graded encoding scheme [GGH13a]. We first recall the high
level description of the GGH scheme, fully described in Chapter 9. In the polynomial rings
R = Z[x]/(xn + 1) and Rq = R/qR (replacing the exponent space Zp), they generate a small
secret g ∈ R and let I = (g) be the principal ideal over R generated by g. They also sample a
uniform z ∈ Rq which stays secret. The “plaintext” is a coset of R/I, and is encoded by [c/z]q,
where c is an arbitrary small coset representative. In practice, as g is hidden, they give another
public parameter y, which is an encoding of 1, and the encoding of the coset is computed as
[e · y]q, where e is a small coset representative (possibly different from c). Their graded encoding
scheme uses the notion of encoding level: the plaintext e is a level-0 encoding, the encoding [c/z]q
is a level-1 encoding, and at level i, an encoding of e + I is given by [c/zi]q = [e · yi]q. These
encodings are both additively and multiplicatively homomorphic, up to a limited number of
operations. More precisely, a product of i level-1 encodings is a level-i encoding. One can multiply
any number of encodings up to κ, instead of exactly κ in multilinear maps (the parameter κ is
called the multilinearity parameter).

The authors of [GGH13a] introduced new hardness assumptions: the Graded Decisional Diffie-
Hellman (GDDH) and its computational variant (GCDH). These are natural analogues of the
Diffie-Hellman problems from group-based cryptography. To ensure their hardness, and hence the
security of the cryptographic constructions, the second main difference with multilinear maps is
the randomization of the encodings described in Section 9.2. The principle is as follows: first some
level-1 encodings of 0, called {xj}j≤mr , are given in the public parameters; then, to randomize a
level-1 encoding u′, one outputs u = [u′ +

∑
j ρjxj ]q where the ρj ’s are sampled from a discrete

Gaussian distribution over Z with deviation parameter σ∗. Without this re-randomization,
the encoding u′ of e allows e to be efficiently recovered using u = [u′y−1]q. Adding the re-
randomization step prevents this division attack, but the statistical properties of the distribution
of the re-randomized encoding u remain correlated to some extent with the original encoding u′.
In Chapter 9, we formalized the re-randomization security goal in the GGH construction, that is
implicit in the work of [GGH13a]. A primary security goal of re-randomization is to guarantee
security of the GDDH problem against statistical correlation attacks. Accordingly, we formulate a
security goal that captures this security guarantee, by introducing a canonical variant of GDDH,
called cGDDH. In this variant, the encodings of some elements are sampled from a canonical
distribution whose statistical properties are independent of the encoded elements. Consequently,
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10. GGHLite: More Efficient Multilinear Maps from Ideal Lattices

the canonical problems are by construction not subject to “statistical correlation” attacks. Our re-
randomization security goal is formulated as the existence of an efficient computational reduction
from the canonical problems to their corresponding non-canonical variants.

As we saw in Chapter 9, in [GGH13a] the authors use a “drowning step” to solve this problem.
This technique, also called “smudging,” was previously used in other applications [AJLA+12,
Gen09, ASP12, BPR12]. Generally, “drowning” consists in hiding a secret vector s ∈ Zn by
adding a sufficiently large random noise e ∈ Zn to it, so that the distribution of s + e becomes
“almost independent” of s. In all of the above applications, to achieve a security level 2λ (where
λ denotes the security parameter), the security analysis requires “almost independent” to be
interpreted as “within statistical distance 2−λ from a distribution that is independent of s.” In
turn, this requirement implies the need for “exponential drowning,” i.e., the ratio γ = ‖e‖/‖s‖
between the magnitude of the noise and the magnitude of secret needs to be 2Ω(λ). Exponential
drowning imposes a severe penalty on the efficiency of these schemes, as their security is related
to γ-approximation lattice problems, whose complexity decreases exponentially with log γ. As
a result, the schemes require a lattice dimension n at least quadratic in λ and key length at
least cubic in λ. In summary, the GGH re-randomization step, necessary for its security, is also a
primary factor in its inefficiency.

Our contributions. Our first main improvement to the GGH scheme relies on a new security
analysis of the drowning step in the GGH re-randomization algorithm. We show that our re-
randomization security goal can be satisfied without “exponential drowning,” thus removing
the main efficiency bottleneck. Namely, our analysis provides a re-randomization at security
level 2λ while allowing the use of a re-randomization deviation parameter σ∗ that only drowns
the norm of the randomness offset r′ ∈ I (from the original encoding to be re-randomized) by a
polynomial (or even constant) drowning ratio γ = λO(1) (rather than γ = 2Ω(λ), as needed in the
analysis of [GGH13a]). However, our analysis only works for the search variant of the Graded
Diffie-Hellman problem. Fortunately, we show that the application of the GGH scheme – the
N -party Key Agreement [GGH13a] – can be modified to rely on this computational assumption
(in the random oracle model).

Our second main improvement of the re-randomization process is to decrease mr, the number
of encodings of 0 needed, from Ω(n logn) to 2. We achieve this result by presenting a new discrete
Gaussian Leftover Hash Lemma (LHL) over algebraic rings. In [GGH13a], the authors apply the
discrete Gaussian LHL from [AGHS13] to show that the distribution of the sum

∑
j≤mr ρjbj is

close to a discrete Gaussian on the ideal I (where xj = [bj/z]q). Our improvement consists in
sampling the randomizers ρj as elements of the full n-dimensional ring R, rather than just from Z.
Since each randomizer now has n times more entropy than before, one may hope to obtain a
similar LHL result as in [AGHS13] while reducing mr by a factor ≈ n. However, as the designers
of the GGH scheme notice in [GGH13a, Section 6.4], the proof techniques from [AGHS13] do not
seem to immediately carry over to our “algebraic ring” LHL setting. Our new LHL over rings
resolves this problem.

The two contributions above allow us to decrease the bit size of the public parameters from
O(κ3λ5 log(κλ)) for the GGH scheme to O(κ3λ log2(κλ)) for GGHLite, for multilinearity factor κ
and security level 2λ for the graded Diffie-Hellman problem.

Technical overview. Our first main result is to reduce the size of the parameter σ∗ in the re-
randomization process. Technically, our improved analysis of drowning is obtained by using the
Rényi divergence (RD), see definition and properties in Section 1.1, to replace the conventional
statistical distance (SD) as a measure of distribution closeness. The Rényi divergence was already
exploited in a different context in [LPR13, Claim 5.11], to show the hardness of Ring-LWE.
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Here, we use the Rényi divergence to decrease the amount of drowning, by bounding the Rényi
divergence between a discrete Gaussian distribution and its offset. This suffices for relating the
hardness of the search problems using these encoding distributions, even though the statistical
distance between the distributions is non-negligible. The technique does not seem to easily extend
to the decision problems, as Rényi divergence induces a multiplicative relationship between success
probabilities, rather than an additive relationship as statistical distance does.

Our second main result is a new LHL over the ring R. We now briefly explain this result and
its proof. For a fixed X = [x1, x2] ∈ R2, with each xi sampled from DR,s, our goal is to study the
distribution ẼX,s = x1 ·DR,s + x2 ·DR,s. In particular, we prove that ẼX,s is statistically close to
DZn,sXT . For this, we adapt the proof of the LHL in [AGHS13], recalled in Section 10.2.1: we
follow a similar series of steps, but the proofs of these steps differ technically, as we exploit the
ring structure.

We first show that X ·R2 = R, except with some constant probability < 1. For this, we adapt
a result from [SS13] on the probability that two Gaussian samples of R are coprime. Note that
in contrast to the LHL over Z in [AGHS13], in our setting the probability that X · R2 6= R is
non-negligible. This is unavoidable with the ring R = Z[x]/(xn + 1), since each random element
of R falls in the ideal (x+ 1) with probability ≈ 1/2, both x1 and x2 (and hence the ideal they
generate) get “stuck” in (x + 1) with probability ≈ 1/4. However, the probability of this bad
event is bounded away from 1 by a constant and thus we only need a constant number of trials
on average with random X’s to obtain a good X by rejection.

Then, we define the orthogonal R-module AX = {v ∈ R2 : X · v = 0}, and apply a directly
adapted variant of [AGHS13, Lemma 10] to show that if the parameter s is larger than the
smoothing parameter ηε(AX) (with AX viewed as an integral lattice), then the statistical distance
between ẼX,s and the ellipsoidal Gaussian DZn,sXT is bounded by 2ε. We finally show that this
condition on the smoothing parameter of AX holds. For this, we observe that the Minkowski
minima of the lattice AX are equal, due to the R-module structure of AX . This allows us to
bound the last minimum from above using Minkowski’s second theorem. A similar approach was
previously used (e.g., in [LM06]) to bound the smoothing parameter of ideal lattices.

Roadmap. The rest of this Chapter is organized as follows. In Section 10.1, we study the Rényi
divergence as an alternative to the statistical distance in order to improve the security analysis
of re-randomization “drowning” step. Section 10.2.2 contains our second main improvement to
the re-randomization process: the algebraic ring variant of the discrete Gaussian leftover hash
lemma from [AGHS13]. In Section 10.3, we show how to combine the results from the previous
two sections to obtain our improved construction GGHLite. Section 10.4 compares the asymptotic
parameters of GGHLite with those of the original GGH scheme. Finally, in Section 10.5, we show
how to adapt some applications of multilinear maps to rely on the hardness of the Ext-GCDH
problem, to which our security result for GGHLite applies.

10.1 Polynomial drowning via Rényi divergence

In this section, we present our first result towards our improvement of the GGH scheme re-
randomization.

10.1.1 Preliminaries
To use our improved drowning lemma in Section 10.1, we need a lower bound on the least singular
value σn(rot(b)) of the matrix rot(b) ∈ Zn×n corresponding to the map x 7→ b · x over R, for a
Gaussian distributed b←↩ DI,σ. We also let b[j] = b(ζ2j+1) denote the jth complex embedding
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of b, where ζ ∈ C is a primitive 2nth root of unity. We define T2(b) = (
∑
j |b[j]|2)1/2. Recall that

we have T2(b)2 = n‖b‖2 (see, e.g., [SS13]). In the proof of [SS13, Lemma 4.1], a probabilistic
lower bound on minj∈[n] |b[j]| is obtained for a Gaussian distributed b. Since

σn(b)2 = min
u∈K,‖u‖=1

‖u · b‖2 = 1
n

min
u∈K,T2(u)2=n

∑
j∈[n]

|u[j]|2 · |b[j]|2

= min
j∈[n]

|b[j]|2 = 1
maxj∈[n] |b[j]−1|2

≤ 1
1
n

∑
j∈[n] |b[j]−1|2

= 1
‖b−1‖2

,

we can immediately adapt it to get the following.

Lemma 10.1 (Adapted from [SS13, Lemma 4.1]). Let R = Zn[x]/(xn + 1) for n a power of 2.
For any ideal I ⊆ R, δ ∈ (0, 1), t ≥

√
2π and σ ≥ t√

2π · ηδ(I), we have:

Prb←↩DI,σ
[
‖b−1‖ ≥ t

σ
√
n/2

]
≤ Prb←↩DI,σ

[
σn(b) ≤ σ

√
n/2
t

]
≤ 1+δ

1−δ
n
√

2πe
t .

We can also obtain a lower bound σn(b)2 ≥ 1
n · ‖b

−1‖−2 by replacing the last line in the
equations above Lemma 10.1 by ≥ 1∑

j∈[n]
|b[j]−1|2

= 1
n·‖b−1‖2 .

10.1.2 Intuition
We show that one may reduce the re-randomization “drowning” ratio σ∗k/‖r′‖ from exponential
to polynomial in the security parameter λ. Although the statistical distance between the re-
randomized encoding distribution D1 (essentially a discrete Gaussian with an added offset
vector r′) and the desired canonical encoding distribution D2 (a discrete Gaussian without an
added offset vector) is then non-negligible, we show that these encoding distributions are still
sufficiently close with respect to an alternative closeness measure to the statistical distance, in
the sense that switching between them preserves the success probability of any search problem
adversary receiving these encodings as input, up to a polynomial transformation. This allows us to
show that our re-randomization goal is satisfied for the search problems GCDH and Ext-GCDH.

Technically, the closeness measure we study is the Rényi divergence, see definition in Section 1.1,
R(D1‖D2) between the distributions D1 and D2, defined as the expected value of D1(r)/D2(r)
over the randomness of r sampled from D1 (for brevity we will call R(D1‖D2) the Rényi divergence
between D1 and D2). Intuitively, the Rényi divergence is an alternative to statistical distance as
measure of distribution closeness, where we replace the difference between the distributions in
statistical distance, by the ratio of the distributions in Rényi divergence. Accordingly, one may
hope Rényi divergence to have analogous properties to statistical distance, where addition in the
property of statistical distance is replaced by multiplication in the analogous property of Rényi
divergence. Remarkably, this holds true in some sense, and we explore some of this below. In
particular, a very important property of the statistical distance is probability preservation: for any
two distributions D1, D2 on space X, and any event E ⊆ X, we have D2(E) ≥ D1(E)−∆(D1, D2).
Lyubashevsky et al. [LPR13] observed an analogous property of the Rényi divergence that follows
roughly the above intuition: D2(E) ≥ D1(E)2/R(D1‖D2). The latter property implies that as
long as R(D1‖D2) is bounded as poly(λ), any event E of non-negligible probability D1(E) under
D1 will also have non-negligible probability D2(E) under D2. We show that for our discrete
Gaussian distributions D1, D2 above, we have R(D1‖D2) = O(poly(λ)), if σ∗k/‖r′‖ = Ω(poly(λ)),
as required for our re-randomization security goal.
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10.1.3 The Rényi divergence between a discrete Gaussian and its offset
For our re-randomization application, we are interested in the Rényi divergence between two
discrete Gaussians with the same deviation matrix S, that differ by some fixed offset vector d.
The following result shows that their Rényi divergence is O(1) if σn(S)/‖d‖ = Ω(1).

Lemma 10.2. For any n-dimensional lattice Λ ⊆ Rn and rank n matrix S ∈ Rm×n (with m ≥ n),
let P be the distribution DΛ,S,w and Q be the distribution DΛ,S,z for some fixed w, z ∈ Rn. If
w, z ∈ Λ, let ε = 0. Otherwise, fix ε ∈ (0, 1) and assume that σn(S) ≥ ηε(Λ). Then:

R(P‖Q) ∈

[(
1− ε
1 + ε

)2
,

(
1 + ε

1− ε

)2
]
· exp(2π‖S−T (w − z)‖2)

⊆

[(
1− ε
1 + ε

)2
,

(
1 + ε

1− ε

)2
]
· exp

(
2π‖w − z‖2
σn(S)2

)
.

Proof. By definition,

P (x) = exp(−π‖(ST )†(x− w)‖2)∑
x∈Λ exp(−π‖(ST )†(x− w)‖2) and Q(x) = exp(−π‖(ST )†(x− z)‖2)∑

x∈Λ exp(−π‖(ST )†(x− z)‖2) .

We have:

R(P‖Q) =
∑
x∈Λ

P (x)2

Q(x)

=
∑
y∈Λ exp(−π‖(ST )†(y − z)‖2)

(
∑
y∈Λ exp(−π‖(ST )†(y − w)‖2))2 ·

∑
x∈Λ

exp(−2π‖(ST )†(x− w)‖2 + π‖(ST )†(x− z)‖2).

Defining c = 2w − z, we have that:

2‖(ST )†(x− w)‖2 − ‖(ST )†(x− z)‖2 = ‖(ST )†(x− c)‖2 − 2‖(ST )†(w − z)‖2.

Hence,

R(P‖Q) = exp(2π‖(ST )†(w−z)‖2)·
∑
x∈Λ exp(−π‖(ST )†(x− c)‖2) ·

∑
y∈Λ exp(−π‖(ST )†(y − z)‖2)

(
∑
y∈Λ exp(−π‖(ST )†(y − w)‖2))2 .

Notice that for any z ∈ Λ, we have
∑
x∈Λ exp(−π‖(ST )†(x− z)‖2) =

∑
x∈Λ exp(−π‖(ST )†x‖2).

From this, we conclude that if w, z ∈ Λ, then c ∈ Λ and hence the sums in the quotient above
cancel out, and we get R(P‖Q) = exp(2π‖(ST )†(w− z)‖2). In general, for any y, z ∈ Rn, we have∑
y∈Λ

exp(−πσ1((ST )†)2·‖y−z‖2) ≤
∑
y∈Λ

exp(−π‖(ST )†·(y−z)‖2) ≤
∑
y∈Λ

exp(−πσn((ST )†)2·‖y−z‖2),

using the fact that σn((ST )†) · ‖y − z‖ ≤ ‖(ST )† · (y − z)‖ ≤ σ1((ST )†) · ‖y − z‖. But∑
y∈Λ

exp(−πσ1((ST )†)2 · ‖y − z‖2) = ρ1/σ1((ST )†),z(Λ) = ρσn(S),z(Λ)

∑
y∈Λ

exp(−πσn((ST )†)2 · ‖y − z‖2) = ρ1/σn((ST )†),z(Λ) = ρσ1(S),z(Λ).
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Using the assumption σ1(S) ≥ σn(S) ≥ ηε(Λ) and Lemma 1.32, it follows that ρσ1(S),z(Λ) and
ρσn(S),z(Λ) are both in the interval [1− ε, 1 + ε] · (det Λ)−1. From the above inequality, we get
that

∑
y∈Λ exp(−π‖(ST )† · (y − z)‖2) is also in this interval. Applying this to the sums in the

expression for R(P‖Q) gives the claimed interval for R(P‖Q).
The claimed inequality follows from ‖(ST )†z‖2 ≤ σ1((ST )†)2 · ‖z‖2 and σ1((ST )†) = 1/σn(S).

10.2 A discrete Gaussian leftover hash lemma over R

In this section, we present our second main result for improving the GGH scheme re-randomization
algorithm. Recall that the GGH algorithm re-randomizes a level-k encoding u′ into u = [u′ +∑mr
j=1 ρjx

(k)
j ]q, where the ρj ’s are sampled from χk = DZ,σ∗

k
and x(k)

j = [b(k)
j /zk]q = [gr(k)

j /zk]q.
To show that the distribution of

∑mr
j=1 ρjb

(k)
j is close to a discrete Gaussian over I, they then apply

the discrete Gaussian LHL from [AGHS13, Theorem 3], using mr = Ω(n logn) fixed elements
b
(k)
j ∈ I that are published obliviously as randomizers “inside” the public zero-encodings x(k)

j .
We show that it suffices to sample 2 randomizers as elements of the full n-dimensional ring R,
rather than just from Z, i.e., we set χk = DR,σ∗

k
. We first review the results of [AGHS13], as our

proof follows the same high-level steps.

10.2.1 Discrete gaussian leftover hash lemma
We now review the main result of [AGHS13]. For X ∈ Zn×m and s > 0, the authors define the
distribution EX,s = X ·DZm,s as the distribution induced by sampling an integer vector v from a
discrete spherical Gaussian with parameter s and outputting y = X · v,

EX,s = {X · v : v←↩ DZm,s}.

They show that with overwhelming probability over the choice of X, the distribution EX,s is
statistically close to a discrete Gaussian distribution. This result is used to study the distribution
of the randomization of an encoding in the GGH scheme.

Theorem 10.3 ([AGHS13, Theorem 2]). For ε negligible in n, let S ∈ Rn×n be a matrix such that
sn = σn(S) ≥ 18Kηε(Zn) (for some universal constant K > 0), and set s1 = σ1(S) and w = s1/sn.
Also let m, s be parameters such that m ≥ 10n log(8(mn)1.5s1w) and s′ ≥ 4mnw ln(1/ε).

Then, when choosing the columns of an n-by-m matrix X from the ellipsoid Gaussian over Zn,
X ←↩ (DZn,S)m, we have with all but probability 2−O(m) over the choice of X, that the statistical
distance between EX,s and the ellipsoid Gaussian DZn,sXT is bounded by 2ε.

Note that this result has been recently improved in [AR13], but this improvement is independent
from the one we obtain in the next Chapter. In [AR13], the authors keep the same distribution
EX,s, but obtain weaker conditions under which the result holds. We recall the proof line
of [AGHS13], as we will modify it in Chapter 10. In [AGHS13], the proof of this theorem proceeds
by the following three lemmata.

Lemma 10.4 ([AGHS13, Lemma 9]). With parameters as above, when drawing the columns
of an n-by-m matrix X independently at random from DZn,S, we get X · Zn = Zn with all but
probability 2−O(m).

Let A = A(X) = {v ∈ Zm : X · v = 0} be the (m− n)-dimensional lattice in Zn orthogonal
to all the rows of X. If the smoothing parameter of A is small, then EX,s and DZn,sXT must be
close.
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Lemma 10.5 ([AGHS13, Lemma 10]). Fix X and A as above. If s ≥ ηε(A), then for any point
z ∈ Zn, the probability mass assigned to z by EX,s differs from that assigned by DZn,sXT by at
most a factor of (1− ε)/(1 + ε), namely

EX,s(z) ∈
[

1− ε
1 + ε

, 1
]
·DZn,sXT (z)

In particular, if ε < 1/3 then the statistical distance between EX,s and DZn,sXT is at most 2ε.

Finally, the authors of [AGHS13] show that the smoothing parameter of A is indeed small.

Lemma 10.6 ([AGHS13, Corollary 3]). With the parameters above, the smoothing parameter of
A satisfies ηε(A) ≤ 4mnw ln(1/ε), except with probability 2−O(m).

The following also holds for general lattices.

Theorem 10.7 ([AGHS13, Theorem 3]). Let Λ ⊆ Rn be a full-rank lattice and B a matrix whose
columns form a basis of Λ. Also let M ∈ Rn×n be a full-rank matrix, and denote S = M(BT )−1,
s1 = σ1(S), sn = σn(S), and w = s1/sn. Finally, let ε be negligible in n and m, s be parameters
such that m ≥ 10n log(8(mn)1.5s1w) and s ≥ 4mnw ln(1/ε). If s ≥ ηε(Zn), then when choosing
the columns of an n-by-m matrix X from the ellipsoid Gaussian over Λ, X ←↩ (DΛ,M )m, we have
with all but probability 2−O(m) over the choice of X, that the statistical distance between EX,s and
the ellipsoid Gaussian DΛ,sXT is bounded by 2ε.

10.2.2 Our new leftover hash lemma
For a fixed X = (x1, x2) ∈ R2, we define the distribution ẼX,s = x1DR,s + x2DR,s as the
distribution induced by sampling u = (u1, u2) ∈ R2 from a discrete spherical Gaussian with
parameter s, and outputting y = x1u1 + x2u2. We prove the following result on ẼX,s.

Theorem 10.8. Let R = Z[x]/(xn + 1) with n a power of 2 and I = (g) ⊆ R, for some g ∈ R.
Fix ε ∈ (0, 1/2), X = (x1, x2) ∈ I × I and s > 0 satisfying the conditions

• Column span: X ·R2 = I.

• Smoothing: s ≥ max(‖g−1x1‖∞, ‖g−1x2‖∞) · n ·
√

2 log(2n(1 + 1/ε))/π.

Then, for all x ∈ I we have ẼX,s(x) = cf(x) ·DI,sXT (x), for some constant c and function f
with values in [ 1−ε

1+ε , 1]. In particular, we have

∆(ẼX,s, DI,sXT ) ≤ 2ε and max(R∞(ẼX,s‖DI,sXT ), R∞(DI,sXT ‖ẼX,s)) ≤ 1 + 4ε.

Finally, if s′ · σn(g−1) ≥ 7n1.5 ln1.5(n),1 x1, x2 ←↩ DI,s′ and n grows to infinity, then the first
condition holds with probability Ω(1).

We prove this result for g = 1, and then we generalize to general g. First, we consider the
column span condition.

Lemma 10.9 (Adapted from [SS13, Lemma 4.2 and Lemma 4.4]). Let S ∈ Rn×n, and σn(S) ≥
7n1.5 ln1.5(n). For n going to infinity, we have Prx1,x2←↩DR,S [X ·R2 = R] ≥ Ω(1).

1By abuse of notation, we identify g−1 ∈ K with the linear map over Qn obtained by applying the polynomial-
to-coefficient-vector mapping to the map r 7→ g−1r.
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Let AX ⊆ {(v1, v2) ∈ R2 : x1v1 + x2v2 = 0} be the 1-dimensional R-module of vectors
orthogonal to X. We view AX as an n-dimensional lattice in Z2n, via the polynomial-to-
coefficient-vector mapping.

Lemma 10.10 (Adapted from [AGHS13, Lemma 10]). Fix X such that X ·R2 = R and AX as
above. If s ≥ ηε(AX), then ẼX,s(z) = cf(z) ·DZn,sXT (z) for any z ∈ R, for some constant c and
function f with values in [ 1−ε

1+ε , 1].2 In particular, we have

∆(ẼX,s, DZn,sXT ) ≤ ε

1− ε and max(R∞(ẼX,s‖DZn,sXT ), R∞(DZn,sXT ‖ẼX,s)) ≤
1 + ε

1− ε .

We now study the quantity ηε(AX). First, we show that all successive Minkowski minima
of AX are equal. This property is inherited from the “equal minima property” of ideal lattices
in R.

Lemma 10.11. Let X and AX be as above. Then λ1(AX) = · · · = λn(AX).

Proof. We observe that AX is closed under scalar multiplication by an arbitrary element w ∈ R,
i.e., if v = (v1, v2) ∈ AX then w · v = (w · v1, w · v2) ∈ AX . In particular, let v ∈ AX be a
vector of norm ‖v‖ = λ1(AX). For i = 0, . . . , n − 1, let ei(x) = xi ∈ R. Then the n vectors
(e0 · v, . . . , en−1 · v) are in AX , and all have the same norm λ1(AX), because ‖ej · vi‖ = ‖vi‖
for all i, j. Further, these n vectors are linearly independent over Q: let i be such that vi 6= 0
(which must exist since v 6= 0); the vectors (e0 · vi, . . . , en−1 · vi) are linearly independent
over Q, because the fraction field K of R is a field (it they were not linearly independent over
Q, we would have (

∑
j αjej) · vi = 0 for some non-zero α =

∑
j αjej ∈ K). It follows that

λ1(AX) = · · · = λn(AX) = ‖v‖.

Lemma 10.12. Let X and AX be as above. Then we have ηε(AX) ≤ max(‖x1‖∞, ‖x2‖∞) · n ·√
2 log(2n(1 + 1/ε))/π.

Proof. We first use Lemma 10.11 and Minkowski’s second theorem (see Lemma 1.9) on the
lattice AX :

λn(AX) =
(∏

1≤i≤n λi(AX)
)1/n ≤ √n · ( det(AX)

)1/n
.

Now, observe that AX = L⊥X , where LX = R ·X = {(r ·x1, r ·x2) : r ∈ R} is viewed as a sublattice
of Z2n. We have, by Lemma 1.10, that det(AX) ≤ det(LX) ≤ ‖X‖n, where the latter inequality
follows from the Hadamard inequality, with ‖X‖ =

√
‖x1‖2 + ‖x2‖2 ≤ max(‖x1‖∞, ‖x2‖∞) ·

√
2n.

As a consequence λn(AX) ≤ max(‖x1‖∞, ‖x2‖∞) ·
√

2n. By Lemma 1.27, we have ηε(AX) ≤√
ln(2n(1 + 1/ε))/π · λn(AX), which completes the proof.

Combining the above lemmas, we get Theorem 10.8 for g = 1. The general case is proved as
follows. The injective map Mg : y 7→ g · y on R takes the distribution ẼX,s with X = g−1 ·X to
the distribution ẼX,s, while it takes D

R,sX
T to DI,sXT , with I = (g). The conditions X ·R2 = I

and X · R2 = R are equivalent. The smoothing condition is satisfied for X by the choice of s.
Thus we can apply Theorem 10.8 with g = 1 to ẼX,s, and conclude by applying the mapping Mg

to get the general case of Theorem 10.8. For the very last statement of Theorem 10.8, it suffices
to observe that DI,β = g ·DR,s′(g−1)T .3

2The normalization constant c was omitted in [AGHS13].
3With the same abuse of notation as in the previous footnote, for the term (g−1)T .
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10.3 Our improved GGH grading scheme: GGHLite

We are now ready to describe our simpler and more efficient variant of the GGH grading scheme,
that we call GGHLite. The scheme is summarized in Figure 10.1. The modifications from the
original GGH scheme consist in:

• Using mr = 2 re-randomization elements x1, x2 in the public key, sampling the randomizers
ρ1, ρ2 from a discrete Gaussian DR,σ∗1

over the whole ring R (rather than from Z), applying
our algebraic ring variant of the LHL from Section 10.2.2.

• Saving an exponential factor ≈ 2λ in the re-randomization parameter σ∗1 by applying the Rényi
divergence bounds from Section 10.1.

In terms of re-randomization security requirement, we relax the strong SD-based requirement
on the original GGH scheme to the following weaker RD-based requirement on GGHLite.

Definition 10.13 (Weak re-randomization security requirement). Using the notations of Defini-
tion 9.4, we say that the weak re-randomization security requirement is satisfied at level k with
respect to D(k)

can(eL) and encoding norm γ(k) if R(D(k)
u (eL, r′)‖D(k)

can(eL)) = O(poly(λ)) for any
u′ = [c′/zk]q such that ‖c′‖ ≤ γ(k).

We summarize GGHLite in Figure 10.1, which only shows the algorithms differing from those
in the GGH scheme of Figure 9.3.

• Instance generation InstGen(1λ, 1κ): Given security parameter λ and multilinearity parame-
ter κ, determine scheme parameters n, q, mr = 2, σ, σ′, `g−1 , `b and ` based on the scheme
analysis. Then proceed as follows:

• Sample g ←↩ DR,σ until ‖g−1‖ ≤ `g−1 and I = (g) is a prime ideal and ‖g‖ ≤
√
n · σ.

• Sample z ←↩ U(Rq).
• Sample a level-1 encoding of 1: y = [a · z−1]q with a←↩ D1+I,σ′ .
• For k ≤ κ:

∗ Sample B(k) = (b(k)
1 , b

(k)
2 ) from (DI,σ′)2. If (b(k)

1 , b
(k)
2 ) 6= I, or σn(rot(B(k))) < `b or

‖B(k)‖ >
√
n · σ′, then re-sample.

∗ Define level-k encodings of 0: x(k)
1 = [b(k)

1 · z−k]q, x(k)
2 = [b(k)

2 · z−k]q.
• Sample h←↩ DR,

√
q and define the zero-testing parameter pzt = [hg zκ]q ∈ Rq.

• Return public parameters par = (n, q, y, {(x(k)
1 , x

(k)
2 )}k≤κ) and pzt.

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par:

– Encode e at level k: Compute u′ = [e · yk]q.

– Return u = [u′ + ρ1 · x(k)
1 + ρ2 · x(k)

2 ]q, with ρ1, ρ2 ←↩ DR,σ∗
k
.

Figure 10.1: The new algorithms of our GGHLite scheme.
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Choice of σ, `g−1 and σ′, `b. The upper bound `g−1 on ‖g−1‖ in the rejection test of InstGen
can be chosen as small as possible while keeping the rejection probability pg bounded from 1.
According to Lemma 10.1 and Lemma 1.27 with t = 2

√
2πenp−1

g and δ = 1/3, one can choose

`g−1 = 4
√
πen/(pgσ) and σ ≥ 4πn

√
e ln(8n)/π/pg, (10.1)

to achieve pg < 1. Note that the same choices apply to the GGH scheme: here we have a rigorous
bound on pg instead of the heuristic arguments for estimating in ‖g−1‖ in [GGH13a]; however, as
in [GGH13a], we do not have a rigorous bound on the probability that I is prime conditioned on
this choice.

Let pb be the rejection probability for the lower bound `b on σn(B(k)) in the rejection
test of InstGen. To keep pb away from 1, we use that σn(B(k))2 = minu∈K,‖u‖=1

∑
i=1,2 ‖u ·

b
(k)
i ‖2 ≥

∑
i=1,2 σn(b(k)

i )2. Applying Lemma 10.1 with t = 2
√

2πenp−1
b and δ = 1/3, we get

that σn(b(k)
i ) > pb

8
√
πen · σ

′, except with probability ≤ pb for i ∈ {1, 2} if σ′ ≥ t√
2πη1/3(I), where

η1/3(I) ≤
√

ln(8n)/π · ‖g‖ by Lemma 1.27. Therefore, we can choose

`b = pb
2
√
πen · σ

′ and σ′ ≥ 2n1.5σ
√

e ln(8n)/π/pb. (10.2)

We also need to bound the probability p′b of the first rejection test (b(k)
1 , b

(k)
2 ) 6= I. This is

bounded by some constant < 1 by Theorem 10.8, but it requires the assumption σ′ · σn(g−1) ≥
7n1.5 ln1.5(n). To use Theorem 10.8 to obtain a rigorous bound on p′b, we can satisfy the assumption
as follows. Using the lower bound σn(g−1) ≥ 1√

n‖g‖ from the remark after Lemma 10.1, and using
the rejection condition ‖g‖ ≤

√
n · σ, we have σn(g−1) ≥ 1

nσ , so the Theorem 10.8 assumption is
satisfied by setting

σ′ ≥ 7n2.5 ln1.5(n) · σ. (10.3)

Zero-testing and extraction correctness. The correctness conditions for zero-testing and correctness
remain the same as conditions (9.2), (9.3) for the original GGH scheme. The only modification
needed is for condition (9.1), because in GGHLite, mr = 2 and ρj ∈ R so ‖ρjb(1)

j ‖ ≤
√
n‖ρj‖‖b(1)

j ‖.
Accordingly, condition (9.1) is replaced by:

q > max
(
(n`g−1)8, (3 · n1.5σ∗σ′)8κ) . (10.4)

Security. We state our improved re-randomization security reduction for GGHLite, that works
with much smaller parameters than GGH. To our knowledge, it is the first security proof in which
the Rényi divergence is used to replace the statistical distance in a sequence of games, using
the Rényi divergence properties from Section 10.1 to combine the bounds on changes between
games. This allows us to gain the benefits of Rényi divergence over statistical distance, for both
the drowning and smoothing aspects. Namely, with εd, ερ, εe in Theorem 10.14 set as large as
O(log λ/κ), our weak security requirement of Definition 10.13 is satisfied (the Rényi divergence
between real and canonical encoding distributions is bounded by the quantity R = poly(λ) in
Theorem 10.14), and our re-randomization goal for Ext-GCDH is achieved (whereas the strong
requirement of Definition 9.4 is not satisfied).

Theorem 10.14 (Security of GGHLite). Let εd, ερ, εe ∈ (0, 1/2) and κ ≤ 2n. Suppose that the
following conditions are satisfied for GGHLite:

• LHL Smoothing:
σ∗1 ≥ n1.5 · `g−1 · σ′ ·

√
2 log(4n · ε−1

ρ )/π. (10.5)
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• Offset “Drowning:”
σ∗1 ≥ n1.5 · (σ′)2 ·

√
8πε−1

d /`b. (10.6)

• samp Uniformity Smoothing:

σ′ ≥ σ ·
√
n ln(4n · ε−1

e )/π. (10.7)

Then, if A is an adversary against the (non-canonical) Ext-GCDH problem for GGHLite with run-
time T and advantage ε, then A is also an adversary against the canonical problem Ext-cGCDH
for GGHLite with T ′ = T and advantage

ε′ ≥ (ε−O(κ · 2−n))2/R with R = 2O(κ·(εd+ερ+εe+2−n)). (10.8)

In particular, there exist εd, εe, ερ bounded as O(log λ/κ) such that the re-randomization security
goal in Definition 9.7 is satisfied by GGHLite with respect to problem Ext-GCDH.

Proof. We consider a sequence of games Game0, . . . ,Game5, where the distributions of the view
of A differ among the games as follows:

• Game0: The Ext-GCDH experiment, where y = [az−1]q with a = 1+gry ←↩ D1+I,σ′ and I = 〈g〉,
ui = [(ei,L +

∑
j ρijb

(1)
j + ci) · z−1]q for i ∈ {0, . . . , κ}, ei,L = [ei]g, ei = ei,L + gei,H ←↩ DR,σ′ ,

and ci = g(ei,Lry + ei,H) + g2ryei,H .

• Game1: Modification of Game0 in which ei (for i ∈ {0, . . . , κ}) and a are sampled from the
truncated tail Gaussians Dt

R,σ′ and Dt
1+I,σ′ (instead of the untruncated Gaussians DR,σ′ and

D1+I,σ′ respectively).

• Game2: Modification of Game1 in which the distribution of the re-randomization term
∑
j ρijb

(1)
j

is replaced by the canonical distribution DI,σ∗1 (B(1))T , so ui = [(ei,L + wi + ci) · z−1]q, with
wi ←↩ DI,σ∗1 (B(1))T for 0 ≤ i ≤ κ.

• Game3: Modification of Game2 in which offset vector ci in the randomization of encoding ui is
removed and replaced by −ei,L, so that ui = [(ei,L +wi) · z−1]q, where wi ←↩ DI,σ∗1 (B(1))T ,−ei,L
for 0 ≤ i ≤ κ (note that ei,L + wi is distributed as DI+ei,L,σ∗1 (B(1))T over the randomness of
wi).

• Game4: Modification of Game3 in which ei is sampled from DR,σ′ (instead of sampling ei from
the truncated tail Gaussian Dt

R,σ′), for 0 ≤ i ≤ κ, and a is sampled from D1+I,σ′ (instead of
Dt

1+I,σ′).

• Game5: The Ext-cGCDH experiment, which can be obtained as a modification of Game4 in
which ei,L is sampled uniformly from Rg, instead of being computed from ei as ei,L = [ei]g.

For i = 0, . . . , 5, let Vi denote the distribution of the view of A in Gamei, and let E denote the
event that A outputs the correct Ext-GCDH solution. By the probability preservation property
of Rényi divergence from Lemma 1.4, we have that the advantage of A against Ext-cGCDH
is V5(E) ≥ V1(E)2/R(V1‖V5) and from the probability preservation property of the statistical
distance, the latter is ≥ (ε−∆(V0, V1))2/R(V1‖V5).

To complete the proof, it thus remains to show that ∆(V0, V1) = O(κ ·2−n) and R(V1‖V5) ≤ R,
withR defined in the theorem statement. Using two applications of the weak triangle inequality and
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one application of the R∞ triangle inequality from Lemma 1.4, we get R(V1‖V5) ≤ R∞(V1‖V2)2 ·
R(V2‖V5), R(V2‖V5) ≤ R(V2‖V3) ·R∞(V3‖V5) and finally

R(V1‖V5) ≤ R∞(V1‖V2)2 ·R(V2‖V3) ·R∞(V3‖V4) ·R∞(V4‖V5).

We now bound each factor in turn:

• To bound ∆(V0, V1), we use the fact that Game0 and Game1 differ only if the norm of one of
the sampled ei (for i ∈ {0, . . . , κ}) or a exceeds 2

√
n · σ′. By Lemma 1.40, since σ′ ≥ η1/2(I)

(which follows from the samp uniformity smoothing condition, as shown below), this event
occurs with probability at most 2−n+2 for each of these κ+ 2 Gaussian samples. By the union
bound, it thus follows that

∆(V0, V1) ≤ (κ+ 2) · 2−n+2 = O(κ · 2−n).

• To bound R∞(V1‖V2)2, we apply our LHL over R (Theorem 10.8) to conclude that, for
each i ∈ [κ + 1], R∞(D(

∑
j ρijb

(1)
j )‖DI,σ∗1 (B(1))T ) ≤ 1 + 4ερ ≤ exp(4ερ) if ερ ≤ 1/2, σ∗1 ≥

‖g−1B(1)‖∞n
√

2 log(4n · ε−1
ρ )/π, and B(1) ·R2 = I. The last condition on B(1) holds by the

rejection test of the InstGen algorithm of GGHLite. The condition on σ∗1 holds by the assumed
LHL Smoothing condition and the bound ‖g−1 ·B(1)‖∞ ≤ ‖g−1‖ · ‖B(1)‖ ≤ `g−1 · σ′ ·

√
n, from

the rejection tests of the InstGen algorithm. Using the multiplicativity property over i ∈ [κ+ 1],
and data processing inequality for R∞, we conclude that

R∞(V1‖V2)2 ≤ exp(8 · (κ+ 1) · ερ).

• To bound R(V2‖V3), let D1,i = DI,σ∗1 (B(1))T + ci = DI,σ∗1 (B(1))T ,ci (using I + ci = I, since
ci ∈ I) and D2,i = DI,σ∗1 (B(1))T ,−ei,L for i ∈ [κ+1]. From the offset drowning condition, we have
σ∗1 · `b ≥ σ′, and using the samp uniformity smoothing condition, we have σ′ ≥ ηεe(I), where
we have used the bound ηεe(I) ≤

√
ln(2n(1+1/εe))

π · λn(I) from Lemma 1.27, and the fact that
λn(I) = λ1(I) ≤ ‖g‖ ≤

√
n · σ. We conclude that σn(σ∗1(B(1))T ) ≥ σ∗1 · `b ≥ ηεe(I). Therefore,

we can apply our offset Gaussian divergence bound (Lemma 10.2) for each i (with w = ci and
z = −ei,L) to get that, conditioned on a fixed value of offset ci and encoded element ei,L (as well
as fixed g, B(1) and a), we have R(D1,i‖D2,i) ≤ ( 1+εe

1−εe )2 · exp(2π‖ci + ei,L‖2/(σ∗1σn(B(1)))2) ≤
exp(2π‖ci + ei,L‖2/(σ∗1`b)2 + 8εe) using ( 1+εe

1−εe )2 ≤ exp(8εe) for εe < 1/2. We also have
‖ci + ei,L‖ = ‖ei · a‖ ≤

√
n · ‖ei‖ · ‖a‖ ≤ n1.5 · (σ′)2, using the bounds ‖ei‖ ≤

√
n · σ′,

‖a‖ ≤ 2
√
nσ′. Therefore, we get R(D1,i‖D2,i) ≤ exp(εd + 8εe) using the “Offset Drowning”

condition. Using the multiplicativity property over i ∈ [κ+ 1], and data processing property
of R, we conclude that

R(V2‖V3) ≤ exp((κ+ 1) · (εd + 8εe)).

• To bound R∞(V3‖V4), we recall that for each i ∈ [κ+ 1], the distribution Dt
R,σ′ of ei in Game3

is obtained by rejecting and resampling from DR,σ if the rejection test ‖ei‖ >
√
nσ′ is satisfied.

It follows that Dt
R,σ′(x) = 1

1−prej · DR,σ′(x) for all x in the support of Dt
R,σ′ , where prej is

the probability that a sample DR,σ′ is rejected, and hence that R∞(Dt
R,σ′‖DR,σ′) = 1

1−prej .
By the discrete Gaussian tail bound Lemma 1.40, we have prej ≤ 2−n+2 if σ′ ≥ η1/2(R),
and the latter condition is satisfied by the choice of σ′. It follows that R∞(Dt

R,σ′‖DR,σ′) ≤
1 + 2−n+3. Applying a similar argument to the distribution of a using σ′ ≥ η1/2(I), we have
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R∞(Dt
1+I,σ′‖D1+I,σ′) ≤ 1 + 2−n+3 and hence by the multiplicativity and data processing

properties of the Rényi divergence:

R∞(V3‖V4) ≤ (1 + 2−n+3)κ+2 ≤ exp((κ+ 2) · 2−n+3).

• To bound R∞(V4‖V5), let De denote the distribution of [ei]g over the randomness of ei
sampled from DR,σ′ . We apply smoothing Lemma 1.33. to get that R∞(U(Rg)‖De) ≤ 1+εe

1−εe if
σ′ ≥ ηεe(I). The latter condition holds as shown above. Using the multiplicativity and data
processing properties of Rényi divergence from Lemma 1.4, over i = 0, . . . , κ, we conclude that
for εe ≤ 1/2:

R∞(V4‖V5) ≤
(

1 + εe
1− εe

)κ+1
≤ exp((κ+ 1) · 4εe).

Combining the above bounds gives the claimed bound. For the last statement, it suffices to
observe that ε′ = Ω(ε2/poly(λ)) if κ ·max(εd, ερ, εe) = O(log λ).

10.3.1 Canonical re-randomization algorithm cenc
In Remark 2 of [GGH13a], the authors of the original GGH scheme define a canonicalizing encoding
algorithm cenc that allows for certain applications (like the ABE scheme in [GGH+13c]) to use
the encoding re-randomization multiple times. We can define such a canonical re-randomization
algorithm for our GGHLite in a similar way.

Algorithm cencl(par, k, u′) takes a level-k encoding u′ of some element e ∈ Rg with k ≤ κ and
returns a re-randomized level-k encoding u of e. The parameter l indicates the “re-randomization
depth,” i.e., the number of times that cenc has been applied, and determines the re-randomization
noise level.

Alternative “pairwise closeness” re-randomization security requirement. For applications
such as the ABE scheme in [GGH+13c], it is required that, for any two given level-k encodings
u′1 = [c1/zk]q, u′2 = [c2/zk]q of the same element e, the pair of distributions D(u1), D(u2) of
u1 = cencl(par, k, u′1) and u2 = cencl(par, k, u′2), respectively (over the randomness of cenc), are
“close.” This “pairwise closeness” requirement for re-randomized encodings is an alternative to the
“closeness to a canonical distribution” requirement for re-randomized encodings in Definition 9.4
and Definition 10.13. In the case of the strong SD-based “closeness” requirement in Definition 9.4,
we have, from the triangle inequality property of statistical distance, that the “closeness to a
canonical distribution” requirement of Definition 9.4 implies the “pairwise closeness” requirement.
However, due to the lack of such a general triangle inequality property for the Rényi divergence,
such an implication does not immediately hold for our weak RD-based “closeness” requirements.
Nevertheless, our improved re-randomization analysis of GGHLite above can be carried over to
establish the weak “pairwise closeness” requirement as well.

In the following, we define our weak RD-based “pairwise closeness” re-randomization require-
ment.

Definition 10.15 (Weak pairwise-closeness re-randomization property of cenc). Fix a κ-graded
encoding scheme S, and an instance par of this scheme for security parameter λ. For k ≤ κ and
l ≤ L, let S(k,l) denote a set of “admissible” level-k input encodings at re-randomization depth l.
Let cencl denote a re-randomization probabilistic algorithm that takes as input (par, k, u′) with
u′ a level-k encoding of some level-0 element eL, and returns a re-randomized level-k encoding u
of eL. Then we say that cenc satisfies the weak pairwise closeness re-randomization property for
S with Rényi divergence bound R and admissible input encoding sets {S(k,l)}k∈[κ],l∈[L] if, for any
k ∈ [κ], l ∈ [L] and two level-k encodings u′1, u′2 ∈ S(k,l) of the same level 0 element eL, we have

161



10. GGHLite: More Efficient Multilinear Maps from Ideal Lattices

R(D(u1)||D(u2)) ≤ R = O(poly(λ)), where D(ui) denotes the distribution (over the randomness
of cenc) of the re-randomized encoding ui = cencl(par, k, u′i) for i ∈ {1, 2}.

Next, we show that our requirement above is satisfied for GGHLite by a canonical re-
randomization algorithm cenc with a similar choice of parameters as in Theorem 10.14. The
proof is very similar to the proof of Theorem 10.14. The main difference is the direct “jump” in
the RD-based analysis between the pair of encoding distributions D(u1), D(u2) to avoid going
through an intermediate canonical distribution, which would require applying a “strong” triangle
inequality for the Rényi divergence.

Lemma 10.16 (Weak Pairwise-closeness Re-randomization for GGHLite). Let εd, ερ, εe ∈ (0, 1/2)
and κ ≤ 2n. For k ≤ κ and l ∈ [L], let cencl(par, k, u′) denote the canonicalizing encoding
algorithm for GGHLite that takes a level-k encoding u′ = [c′/zk]q with ‖c′‖ ≤ γk,l, and returns a
re-randomized encoding u = [u′ + ρ1 · x(k)

1 + ρ2 · x(k)
2 ]q with ρ1, ρ2 ←↩ DR,σ∗

k,l
, for some admissible

input encoding norm bound γk,l. Suppose that the following conditions hold:

• LHL Smoothing:

σ∗k,l ≥ n1.5 · `g−1 · σ′ ·
√

2 log(4n · ε−1
ρ )/π. (10.9)

• Offset “Drowning:”

σ∗k,l ≥ (
√

8πε−1
d /`b) · γk,l. (10.10)

Then cencl satisfies the weak pairwise-closeness re-randomization property for GGHLite with Rényi
divergence bound

R = exp(12ερ + εd), (10.11)

and admissible input encoding sets Sk,l = {u′ = [c′/zk]q : ‖c′‖ ≤ γk,l}.

Proof. We fix an instance par = (n, q, y, {(x(k)
1 , x

(k)
2 )}k≤κ) and pzt of GGHLite, with x

(k)
1 =

[b(k)
1 /zk]q, x(k)

2 = [b(k)
2 /zk]q, and y = [a/z]q with a = 1 + gry, and two level-k encodings

u′i = [c′i/zk]q in Sk,l, i.e. with ‖c′i‖ ≤ γk,l, of the same level 0 element eL, so that c′i = eL + ci ∈ R
with ci ∈ I for i ∈ {1, 2}. We consider the following sequence of games, where in each game, a
re-randomized level-k encoding u of eL is sampled, but the distribution of u differs among the
games as follows:
• Game0: In this game, we define u as the re-randomization of u′1, i.e. u = cencl(par, k, u′1) =

[(eL + c1 + w)/zk]q, where w = ρ1 · b(k)
1 + ρ2 · b(k)

2 ∈ R and ρi ←↩ DR,σ∗
k,l

for i ∈ {1, 2}.

• Game1: Modification of Game1 in which the distribution of the re-randomization term w is
replaced by the distribution DI,σ∗

k,l
(B(k))T , i.e. u = [(eL+ c1 +w)/zk]q with w ←↩ DI,σ∗

k,l
(B(k))T .

• Game2: Modification of Game2 in which the randomization offset term c1 ∈ I is replaced by
offset term c2 ∈ I, i.e. u = [(eL + c2 + w)/zk]q with w ←↩ DI,σ∗

k,l
(B(k))T .

• Game3: Modification of Game2 which “undoes” the modification introduced in Game1, i.e. in
this game we have u = [(eL + c2 +w)/zk]q, where w = ρ1 · b(k)

1 + ρ2 · b(k)
2 ∈ R and ρi ←↩ DR,σ∗

k,l

for i ∈ {1, 2}. Observe that in this game, u has exactly the distribution of a re-randomization
of u′2, i.e. u = cencl(par, k, u′2).
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For i = 0, . . . , 3, let D(u)i denote the distribution of u in Gamei. To prove the lemma, it thus
suffices to show that R(D(u)0‖D(u)3) ≤ R, with R defined in the lemma statement. Applying
both of the weak triangle inequalities from Lemma 1.4, we get

R(D(u)0‖D(u)3) ≤ R∞(D(u)0‖D(u)1)2 ·R(D(u)1‖D(u)2) ·R∞(D(u)2‖D(u)3).

We now bound each factor in turn:

• To bound R∞(D(u)0‖D(u)1)2, we apply our LHL over R (Theorem 10.8) to conclude that
R∞(D(u)0‖D(u)1) ≤ 1 + 4ερ if σ∗k,l ≥ ‖g−1B(1)‖∞n

√
2 log(4n · ε−1

ρ )/π, and B(1) · R2 = I.
The last condition on B(1) holds by the rejection test of the InstGen algorithm of GGHLite. The
condition on σ∗k,l holds by the assumed LHL Smoothing condition and the bound ‖g−1·B(k)‖∞ ≤
‖g−1‖ · ‖B(k)‖ ≤ `g−1 · σ′ ·

√
n, from the rejection tests of the InstGen algorithm. Using the

data processing inequality for R∞, we conclude that

R∞(D(u)0‖D(u)1)2 ≤ exp(8ερ).

• To bound R(D(u)1‖D(u)2), notice that for i ∈ {1, 2}, using the fact that ci ∈ I, the distribution
of ci + w in Gamei is Di

def= DI,σ∗
k,l

(B(k))T ,ci . Applying our offset Gaussian divergence bound
(Lemma 10.2) (with w = c1,z = c2) gives R(D(u)1‖D(u)2) ≤ exp(2π‖c1−c2‖2/(σ∗k,lσn(B(k)))2).
The latter is upper bounded by exp(εd) if (σ∗k,l)2 ≥ 2π‖c1−c2‖2

εd·σn(B(k)))2 . This last condition is satisfied
by the offset drowning condition, using ‖c1 − c2‖ = ‖c′1 − c′2‖ ≤ 2γk,l and the acceptance
condition σn(B(k)) ≥ `b of the InstGen algorithm. We conclude that

R(D(u)1‖D(u)2) ≤ exp(εd).

• To bound R∞(D(u)2‖D(u)3), we apply the LHL over R (Theorem 10.8) with the same argument
as used to bound R∞(D(u)0‖D(u)1), except that this time, the order of the arguments to
R∞ is reversed. Since the R∞ upper bound of Theorem 10.8 holds regardless of the order, we
conclude that

R∞(D(u)2‖D(u)3) ≤ exp(4ερ).

Combining the above bounds gives the claimed bound R.

10.3.2 Eliminating z: an NTRU variant of GGHLite
In this section, we introduce a simplified variant of the GGH/GGHLite scheme that eliminates the
parameter z, and yet preserves the security of the GDDH/GCDH problems. We call our variant the
NTRU variant, since it involves publishing “NTRU-like” quotients pk(k)

i = [x(k)
i /yk]q = [b(k)

i /ak]q
instead of the separate GGH parameters x(k)

i , y, thus cancelling out the parameter z, and replacing
it effectively by a. Similarly, level-k encodings in this construction also correspond to GGHLite
encodings divided by yk, i.e., have the form u = [(e · ak + ρ1b

(k)
1 + ρ2b

(k)
2 )/ak]q = [e+ ρ1pk

(k)
1 +

ρ2pk
(k)
2 ]q. The zero testing parameter is accordingly modified to pzt = h

g a
k. The latter encoding

resembles an NTRU ciphertext for e with respect to public keys pk(k)
1 , pk

(k)
2 , although in NTRU we

have only one public key, whereas here we have two public keys. The fact that public parameters
and encodings can be efficiently translated from GGHLite to the NTRU variant by taking quotients
in Rq, implies that the security of the NTRU variant is at least as hard as GGHLite. Details of
the scheme are summarized in Figure 10.2.
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• Instance Generation InstGen(1λ, 1κ): Given security parameter λ and multilinearity param-
eter κ, determine scheme parameters n, q, mr = 2, σ, σ′, `g−1 , `b,`. Let R = Z[x]/(xn + 1) and
Rq = R/qR = Zq[x]/(xn + 1). Do the following:

• Sample g ←↩ Dt
R,σ. If (1) ‖g−1‖ > `g−1 or (2) (g) is not a prime ideal, resample g, else define

ideal I = (g).
• Sample a←↩ Dt

1+I,σ′ (note that a = 1 + gry for some ry ∈ R).
• For k ∈ [κ]:

∗ Sample B(k) = (b(k)
1 , b

(k)
2 ) from (Dt

I,σ′)2. If: (1) (b(k)
1 , b

(k)
2 ) 6= I, or (2) σn(rot(B(k))) < `b,

resample.
∗ Define level-k public keys: pk(k)

1 = [b(k)
1 · a−k]q, pk(k)

2 = [b(k)
2 · a−k]q.

• Sample h←↩ DR,
√
q and define the zero-testing parameter: pzt,κ = [hg aκ]q ∈ Rq.

• Return public parameters par = (n, q, {(pk(k)
1 , pk

(k)
2 )}k∈[κ]) and pzt.

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par, return
u = [e + ρ1 · pk(k)

1 + ρ2 · pk(k)
2 )]q, with ρ1, ρ2 ∼ DR,σ∗

k
(note u = [(c′ + ρ1b

(k)
1 + ρ2b

(k)
2 )/ak]q,

where c′ = e · ak ∈ e+ I).

Figure 10.2: The new algorithms of our NTRU variant GGHLite scheme. Other algorithms are
the same as in the original GGH scheme.

Security of the construction.. We can define the corresponding problems GCDHNTRU , ExtGCDHNTRU
and GDDHNTRU for this NTRU variant, in the natural way as in Section 9.2, but with respect
to experiment of Figure 10.3.

Given parameters λ, n, q,mr, κ, σ
′, proceed as follows:

1. Run InstGen(1n, 1κ) to get par = (n, q, {pk(k)
j }j,k) and pzt.

2. For i = 0, . . . , κ:
- Sample ei ←↩ DR,σ′ and fi ←↩ DR,σ′ ,
- Set ui = [ei +

∑
j ρijpkj ]q with ρij ←↩ χ1 for all j.

3. Set u∗ = [
∏κ
i=1 ui]q.

4. Set vC = [e0u
∗]q.

5. Sample ρj ←↩ χκ for all j; set vD = [e0u
∗ +

∑
j ρjpk

(κ)
j ]q.

6. Set vR = [f0u
∗ +

∑
j ρjpk

(κ)
j ]q.

Figure 10.3: The GGHNTRU security experiment.

To show that the NTRU variant of the GGH encoding scheme is at least as secure as the GGH
scheme, we now provide a formal reduction from GDDH to GDDHNTRU (and similarly for the
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other two problems).

Theorem 10.17. There exists a polynomial time reduction from GDDH (resp. GCDH/ExtGCDH)
to GDDHNTRU (resp. GCDHNTRU/ExtGCDHNTRU ).

Proof. For simplicity, we only describe the reduction from GDDH to GDDHNTRU . Let
{(y, {xj}j , pzt), u0, . . . , uκ, v} be a GDDH instance and let O be a polynomial-time oracle for
solving GDDHNTRU .

• Let pk(k)
j = [x

(k)
j

y ]q for j ∈ {1, 2} and k ∈ [κ],

• Let p̂zt = [pzt · yκ]q,

• Let v̂ = [v · y−κ]q,

• Call the oracle O on input {({pk(k)
j }j,k, p̂zt), [u0

y ]q, . . . , [uκy ]q, v̂}.

We have ui = enc1(ei) = [eiy +
∑
j ρ

(i)
j x

(1)
j ]q for all i ∈ [κ], then let untru

i = [uiy ]q =

[ei+
∑
j ρ

(i)
j

x
(1)
j

y ]q = [ei+
∑
j ρ

(i)
j pk

(1)
j ]q is a valid ntru variant level-1 encoding for ei. Furthermore,

if v = vD, then

v̂ = [(e0 ·u∗+
∑
j

ρj ·x(κ)
j ) · y−κ]q = [e0 ·

κ∏
i=1

(ui
y

) +
∑
j

ρj ·
x

(κ)
j

yκ
]q = [e0 ·

κ∏
i=1

untru
i +

∑
j

ρj · pk(κ)
j ]q,

is a valid ntru variant level-κ encoding of
∏
i ei. Similarly, if v = vR, then v̂ is a valid ntru

variant level-κ encoding of f0
∏
i≥1 ei, as required.

10.4 Parameter settings

In Table 10.1, we summarize asymptotic parameters for GGHLite to achieve 2λ security for the
underlying Ext-GCDH problem, assuming the hardness of the canonical Ext-cGCDH problem,
and to satisfy the zero-testing/extraction correctness conditions with error probability λ−ω(1).
For simplicity, we assume that κ = ω(1) and κ = O(poly(λ)). For comparison, we also show the
corresponding parameters for GGH. The “Condition” column lists the conditions that determine
the corresponding parameter in the case of GGHLite. For security of the canonical Ext-cGCDH
problem, we assume (as in [GGH13a]) that the best attack is the one described in [GGH13a,
Section 6.3.3], whose complexity is dominated by the cost of solving γ-SVP (the Shortest lattice
Vector Problem with approximation factor γ) for the lattice I, with γ set at ≈ q3/8 to get a
sufficiently short multiple of g. By the lattice reduction “rule of thumb,” to make this cost 2λ, we
need to set

n = Ω(λ log q). (10.12)

When κ = poly(log λ), the dimension n, encoding length |enc| and public parameters length
|par| in our scheme GGHLite are all asymptotically close to optimal, namely quasi-linear in the
security parameter λ, versus quadratic (resp. cubic and quintic) in λ for GGH [GGH13a]. Thus
we expect GGHLite’s public parameters and encodings to be orders of magnitudes shorter than
GGH for typical λ ≈ 100.
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Table 10.1: Asymptotic parameters.

Parameter GGHLite GGH[GGH13a] Condition
mr 2 Ω(n logn) LHL: Theorem 10.8
σ O(n logn) O(n logn) Eq. (10.1)
`g−1 O(1/

√
n logn) O(1/

√
n logn) Eq. (10.1)

εd, εe, ερ O(κ−1) O(2−λκ−1) Eq. (10.8)
σ′ Õ(n3.5) Õ(n1.5

√
λ) Eq. (10.3)

σ∗1 Õ(n5.5√κ) Õ(2λλn4.5κ) Drown: Eq. (10.6)
εext O(λ−ω(1)) O(λ−ω(1))
q Õ(n10.5√κ)8κ Õ(2λλ1.5n8.5κ)8κ Corr.: Eq. (10.4)
n O(κλ log λ) O(κλ2) SVP: Eq. (10.12)
|enc| O(κ2λ log2 λ) O(κ2λ3) O(n log q)
|par| O(κ3λ log2 λ) O(κ4λ5 log λ) O(mrκn log q)

10.5 Applications

In previous sections, we have shown that our graded encoding scheme GGHLite can be instantiated
much more efficiently than the GGH scheme [GGH13a], but on the other hand, with our efficient
choice of parameters for GGHLite, we have only been able prove the hardness of the search
problem Ext-GCDH (based on the hardness of the corresponding canonical problem) rather than
the decision problem GDDH used in [GGH13a]. In this section, we show that the hardness of
Ext-GCDH is sufficient for important applications of graded encoding schemes, in the random
oracle model. In particular, we show that existing protocol based on the hardness of GDDH can
be easily modified to make their security based on Ext-GCDH in the random oracle model, while
preserving the efficiency of the original protocols, up to a small factor.

10.5.1 Efficient one-round N -party Diffie-Hellman key exchange in the ROM
We show how to adapt the one round N -party key exchange protocol described in [GGH13a,
Section 5] and recalled in Section 9.1.2 (originally described by Boneh and Silverman [BS03] in the
abstract setting of multilinear maps) to achieve security assuming the hardness the Ext-GCDH
problem, rather than the GDDH problem, in the random oracle model. The modification is
straightforward: we simply replace the shared key s = ext(par, pzt, v) in the original protocol,
where v is the encoding of the Diffie-Hellman product of the N parties’ secrets, by its hash
K = H(ext(par, pzt, v)), where H(.) : {0, 1}∗ → {0, 1}λ denotes a hash function modelled as a
random oracle. Details follow.

Construction. Given a κ-graded encoding scheme with κ = N − 1 over an encoded element ring
R/I of prime order p, and a hash function H : {0, 1}∗ → {0, 1}λ, the N -party key exchange
protocol is presented in Figure 10.4.

Correctness. We have to show that all the N computed keys K1, . . . ,KN are equal except for
negligible probability λ−ω(1). In the KeyGen algorithm, each party computes an encoding vj of
the product eL =

∏
i ei,L in the ring R/I. Since |R/I| = Ω(2λ) is prime and the distribution

of the ei,L’s is within statistical distance O(2−λ) of uniform on R/I, the product eL is also
within negligible statistical distance O(2−λ) to a uniformly random element in R/I. Hence by

166



10.5. Applications

• Setup Setup(1λ, 1N ): Given security parameter λ and number of parties N , run
InstGen(12λ+1, 1N−1) for the graded encoding scheme to get (par, pzt) and output protocol
public parameters (par, pzt).

• Publish Publish(par, pzt, i): The ith party runs the level-0 encoding sampler to generate a
random secret key ei = Samp(par) (corresponding to encoded element ei,L), and publishes a
corresponding level-1 public key ui = enc1(par, ei).

• KeyGen KeyGen(par, pzt, j, ej , {ui}i6=j): The jth party computes a level-(N − 1) encoding
vj = ej ·

∏
i6=j ui of the Diffie-Hellman product

∏
i ei,L, and computes the key Kj = H(sj),

where sj = ext(par, pzt, vj) is the extracted string for vj .

Figure 10.4: Our modified N -party Diffie-Hellman key exchange protocol.

the extraction correctness property of the encoding scheme, all N extracted strings {sj}i∈[N ],
and hence also all N computed keys {Kj}i∈[N ], are equal, except with negligible probability
O(N · λ−ω(1)) = O(λ−ω(1)) for N = λO(1).

Passive security. We have to show that, given (par, pzt) and the public keys u1, . . . , uN , the
key (say K1) is indistinguishable to the adversary A from a uniformly random string in {0, 1}λ,
assuming the hardness of the Ext-GCDH problem and the random oracle model for H. Formally,
we define a passive security attack game, in which A is given (par, pzt), u1, . . . , uN , and Tb, for a
uniformly random bit b ∈ {0, 1}, where T0 = K1 is the real key and T1 = R←↩ U({0, 1}λ) is an
independent uniformly random string, and A outputs a guess b′ for b. We say that A’s advantage
is ε = 2(Pr[b′ = b]− 1/2).

Lemma 10.18. Let A denote an attacker, in the random oracle model for H, against the passive
security of the N-party Diffie-Hellman key exchange protocol in Figure 10.4, with run-time T
and advantage ε, making qH queries to H. Then there exists an algorithm A′ for the Ext-GCDH
problem for the underlying encoding scheme, with run-time T ′ = T and success probability
ε′ ≥ ε/(2qH).

Proof. Let Game1 denote the passive security attack game with A, and let Game2 denote a
modification of Game1 in which A’s queries to H are answered differently as follows: if the query
x is equal to s1 = ext(par, pzt, e1 ·

∏
i>1 ui), the query is answered with a uniformly random

K ∈ {0, 1}λ (instead of K1 = H(s1)), otherwise, the query is answered with H(x), as in Game1.
For i ∈ {1, 2}, let Si denote the event that b′ = b in Gamei, and let E denote the event in

Game1 that A queries H at s1. Note that by definition, Pr[S1] = 1/2 + ε/2, and we also have
Pr[S2] = 1/2 because in Game2, Tb is a uniformly random string independent of A’s prior view,
regardless of the value of b. On the other hand, since the view of A is identical in Game1 and
Game2 until A queries H at s1, we have |Pr[S1]− Pr[S2]| ≤ Pr[E]. It follows that Pr[E] ≥ ε/2.
Given an input instance (par, pzt, {ui}i) of the Ext-GCDH problem, the attacker A′ simply runs
A on input (par, pzt, {ui}i) and Tb (with T0 = K1 chosen uniformly random in {0, 1}λ – note
that A′ does not need to know s1 to simulate T0) and simulates Game1, hoping that the event E
occurs. Let {xi}i∈[qH ] denote the queries made by A to H, When A finishes, A′ chooses i ∈ [qH ]
uniformly at random and outputs xi as its guess for A’s query that equals s1 (note that until A
queries H at s1, the view of A is perfectly simulated by A′ as in Game1, so Pr[E] is preserved).
Conditioned on the event E occurring, we have xi = s1 with probability ≥ 1/qH . Overall, A′
outputs the correct Ext-GCDH solution with probability ≥ 1/qH · Pr[E] ≥ ε/(2qH).
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Note that when the protocol attacker A has run-time T = 2λ (so that also qH ≤ 2λ) and
advantage ε ≥ 2−λ, the Ext-GCDH attacker A′ constructed by our security lemma above, has
run-time T ′ = 2λ and advantage ε′ ≥ 2−(2λ+1), thus contradicting the assumed 22λ+1-security of
the undrlying encoding scheme (it is for this reason that we used a security parameter λ′ = 2λ+ 1
for the encoding scheme). Consequently, we only lose a constant factor ≈ 2 in relating the security
parameter of the encoding scheme to that of the protocol, essentially preserving the efficiency of
our encoding scheme in this application.
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The Learning With Errors problem (LWE), introduced by Regev [Reg05, Reg09], and the Small
Integer Solution problem (SIS), introduced by Ajtai [Ajt96], are fundamental in lattice-based
cryptography as most of the recent schemes are based on them. Regev also provided a quantum
reduction from a standard lattice problem to prove the hardness of LWE. Peikert [Pei09] provided
the first classical reduction, but only for an exponential modulus q. In Chapter 4, we showed
that LWE (in dimension n) is at least as hard as standard worst case lattice problems (in
dimension

√
n), even with polynomial modulus. We also showed that the hardness of LWE is a

function of n log q. In Chapter 5, we studied the hardness of two variants: the Module-SIS and
Module-LWE problems, which bridge SIS with Ring-SIS, and LWE with Ring-LWE, respectively.
We also showed that the Ring-LWE problem is hard independently of the arithmetic shape of the
modulus q. Previously, this problem was only shown to be hard for some specific moduli.

In Chapter 7, we proposed the first lattice-based group signature schemes where the signature
and public key sizes are essentially logarithmic in the number of group members (for any fixed
security level). The security of our schemes is proved in the random oracle model (ROM) under
the SIS and LWE assumptions. In Chapter 8, we introduced the first lattice-based group signature
also with logarithmic signature size but enjoying another functionality, verifier local revocation.
In the ROM, this scheme is proved to be secure based on the hardness of the SIS problem.

Finally, in Chapters 9 and 10, we studied the GGH Graded Encoding Scheme introduced
by Garg, Gentry and Halevi [GGH13a]. The GGH scheme, based on ideal lattices, is the first
plausible approximation to a cryptographic multilinear map. The main contributions of our work
were to formalize, simplify and improve the security analysis of the “re-randomization process” in
the GGH construction. We applied these results in a new construction called GGHLite which is
more efficient than the original construction. We first use the Rényi divergence instead of the
conventional statistical distance as a measure of distance between distributions in the security
reduction to obtain our first improvement. Our second achievement is to construct a scheme with
a reduced number of randomizers. These two contributions allow to decrease the bit size of the
public parameters from O(λ5 log λ) for the GGH scheme to O(λ log2 λ) in GGHLite, with respect
to the security parameter λ (for a constant multilinearity parameter).

I believe that lattice-based cryptography is a good candidate for modern cryptography. We
already mentioned the advantages: its simplicity, the existence of well understood security proofs
relying on hard problems on lattices, and the fact that it allows to construct basic primitives
(such as encryption or signature schemes) and very exciting ones (such as fully homomorphic
encryption, or cryptographic multilinear maps), which, at least for now, only exist in lattice-based
cryptography. The introduction of the ring variants [Mic02a, Mic07] of the SIS and LWE problems
and the adaptation of the corresponding schemes was a first step for all those schemes to be more
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efficient in practice. The only problem is that we are not certain of the security of those schemes,
as the ring variants of SIS and LWE are only proven secure under the hardness of variants of SVP
on ideal lattices [LM06, PR06, LPR10]. Furthermore, even using the ring variants the size of the
schemes are still large because of the size of the parameters needed for the security reductions
to apply. As a consequence, to be efficient in practice, implementations use parameters smaller
than the ones which should be used to keep the security based on worst-case lattice problems (for
example in [MR09, GLP12]).

It seems that there is a gap between what we can prove to be secure, and what is implemented
in practice, and that the biggest challenge in lattice-based cryptography today is to produce
primitives that are both secure and efficient. There already exist some works in this direction,
as [LMPR08, MR09, GLP12, PG13, OPG14, PDG14] for practice lattice-based signature, hash
function, and encryption schemes. There are many ways to tackle this problem. The first one
would be to improve the existing security reductions, to obtain better parameters which could
be used in practice, and to work on the reductions of the ring variants of SIS and LWE, maybe
to prove their hardness without restrictions on the variant of SVP. Another line of research
would be to improve the dependency of the primitives to those parameters, and to work on the
implementation of the primitives. In the following, we describe several project for each of these
approaches.

The security foundations. Concerning the hardness of the LWE problem, we showed in Chapter 4
that there is a classical reduction from a lattice problem in dimension

√
n to LWE in dimension n

and a polynomial modulus. This quadratic loss in the dimension does not exist in the quantum
reduction of Regev [Reg05, Reg09]. The dimension of the lattice is crucial here as the hardness
of the lattice problem depends mainly on its dimension. Consequently, a first question that arises
is the existence of a reduction which does not have this quadratic loss.

Further, in the same work we proved the classical hardness of Ring-LWE for an exponential
modulus under the hardness of problems on general lattices (instead of problems on ideal lattices
as in previous reductions). A second question that arises is the existence of a classical reduction
that would prove the hardness of the Ring-LWE problem for a polynomial modulus under the
hardness of problems in general lattices. We already have some elements to answer this question
(in Section 5.2.5): a modulus-switching reduction for this problem allows to reduce Ring-LWE
with a modulus q to Ring-LWE with another modulus p (this modulus-switching method is
crucial in the proof of classical hardness of LWE). But to be used in this particular case, this
reduction requires the first Ring-LWE problem to have a small secret size, and unfortunately it is
not proven yet that Ring-LWE remains hard for very small secrets. It would be very interesting
to work on this problem, as the Ring variant of LWE is the one on which practical cryptographic
constructions are based.

On the other hand, we should continue to study carefully the variants of SVP on ideal lattices
on which rely the hardness assumption of the ring variants of SIS and LWE. Ideal lattices are a
specific family of Euclidean lattices that correspond to ideals of the ring of integers of a number
field. In this particular family there is an additional structure which is used in the schemes to be
more efficient, but could also be a problem in term of security. For now, there is no really faster
algorithm to solve variants of SVP on ideal lattices, but it would be interesting to see if one can
exploit this additional structure to devise more efficient attacks.

In Chapter 10, we use the Rényi divergence in the security reductions instead of the statistical
distance. This new technique could be used in other existing constructions, to improve parameters
guaranteeing a desired level of security. It is also still open to find a way to use this method for
reductions using decisional problems instead of computational ones. In a joint work in progress,
with Ron Steinfeld and Damien Stehlé, we suggest a solution to use the Rényi divergence in
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reductions between decisional problems. But we still have a condition on the problems, and this
solution does not apply to the specific case of GDDH needed in Chapter 10. We also provide
alternative reductions for existing problems, such as LWE with uniform noise [DMQ13], which
have parameters slightly better than the original reductions and are often simpler. But there still
are many reductions which could be improved with this technique, in particular if we manage to
remove the condition on the problems to apply our method to decisional problems.

Finally, the security of the N -party Diffie Hellman key exchange using both constructions
(GGHLite and [CLT13]) is based on problems (like GDDH for the GGH scheme) which are not
well studied. The situation is similar for other variants, such as the Multilinear Jigsaw puzzles,
used for the security of obfuscation schemes [GGH+13b]. It would be interesting to either prove
the security of these schemes, or to construct a version of this multilinear map with a security
based on LWE, or another well studied problem. One way could be to use the similarities
between the two existing multilinear map schemes [GGH13a, CLT13] and some existing somewhat
homomorphic encryption schemes [Gen09, CCK+13].

Faster primitives and implementations. The two lattice-based group signature schemes that we
describe in this thesis are not usable in practice. It is for the same reason as many lattice-
based schemes: the parameters for the schemes to be secure are much too high for an efficient
implementation. The solution we already mentioned is to use the ring variants of SIS and
LWE to construct schemes. It should be interesting to adapt both schemes in the ring setting.
These adaptations seem quite direct. The remaining problem concerning efficiency will be the
zero-knowledge proofs of knowledge. In both constructions, we have to proceed with parallel
repetitions of the zero-knowledge proofs of knowledge needed in the signature (both described in
Chapter 6.4.3). In Chapter 7, we need this repetition to lower the rejection probability, whereas
in Chapter 8, we need it as the soundness error is a constant. In both cases, this repetition is
an obstacle to an efficient variant of group signature schemes. It would also be interesting to
implement those ring versions of the lattice-based group signature schemes to compare their
efficiency with existing ones [Gro07, AS12], and to determine which size of group we could achieve
using those constructions.

Finally, the first step after our result in Chapters 9 and 10 is to implement the GGHLite scheme
and to compare the results of the implementation with the only other existing implementation
of multilinear maps in [CLT13]. In a work in progress with Martin Albrecht, Catalin Cocis and
Fabien Laguillaumie, we work on this implementation of GGHlite and of the N -party Diffie-
Hellman key exchange (described in Section 10.5.1). We also work on setting practical and secure
parameters, by studying the best known attacks against the scheme.
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