INTRODUCTION TO (LATTICE-BASED) CRYPTOGRAPHY

Adeline Roux-Langlois

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

Cryptography

Let's start with a simple example: you want to send a message to someone.

Two possibilities:

- Either you share a secret key (AES...),
- Either you don't \Rightarrow public key cryptography.

Cryptography

Let's start with a simple example: you want to send a message to someone. Two possibilities:

- Either you share a secret key (AES...),
- Either you don't \Rightarrow public key cryptography.

Public key cryptography

Public key cryptography

Public key cryptography

Examples: factorisation (RSA), discrete log (El Gamal) ...

What does it mean to be difficult? Solving those problems needs an exponential complexity on a classical computer.

Public key encryption

Definition

A public key encryption scheme is defined by three algorithms (**KeyGen, Enc, Dec**) such that:

- KeyGen takes as input the security parameter λ and outputs the keys (pk, sk),
- Enc takes as input pk and a message m and outputs c = Enc(pk, m),
- **Dec** takes as input sk and a cipher c and outputs m = Dec(sk, c),

such that Dec(sk, (Enc(pk, m)) = m.

Public key encryption

Definition

A public key encryption scheme is defined by three algorithms (**KeyGen, Enc, Dec**) such that:

- KeyGen takes as input the security parameter λ and outputs the keys (pk, sk),
- Enc takes as input the public key pk and a message m and outputs c = Enc(pk, m),
- Dec takes as input the secret key sk and a cipher c and outputs m = Dec(sk, c),

such that Dec(sk, (Enc(pk, m)) = m).

Two important properties: correctness and security.

How do we define security of a public key encryption?

How do we define security of a public key encryption?

We use the notion of indistinguishability of the ciphertexts.

IND-CPA security

To define the security, we use a game between a challenger and an adversary. We define the following experiment:

> Challenger Adversarv $b \leftarrow U(\{0,1\})$ Generate (pk, sk)pk \longrightarrow M_0, M_1 Choose M_0, M_1 ← $c \leftarrow \mathsf{Enc}(pk, M_b)$ Output b' \longrightarrow \mathcal{A} wins if b = b'

> > $Adv^{CPA}(\mathcal{A}) = |\Pr[\mathcal{A} \text{ wins}] - 1/2|$

Today: an introduction to (lattice-based) cryptography

- 1. El Gamal encryption scheme
 - Background
 - Discrete logarithm problem
 - El Gamal scheme and its security
- 2. Regev's encryption scheme
 - Lattices and hard problem on lattices
 - Learning With Errors problem
 - How to encrypt using LWE?
 - Practical scheme using Module-LWE

Security hypothesis

To build a public key encryption scheme, we need:

- a "difficult to inverse" problem: allows to build a public key using a secret key but not to come back,
- ► a efficient key generation.

Example of RSA encryption scheme:

- ► the secret key is (p, q) two distinct primes
 ⇒ we have to be able to generate large prime efficiently
- the public key is N = pq

 \Rightarrow the "factorization" problem must be difficult to solve.

Difficult problem vs efficient algorihtm

Computational security: different from a perfect security, schemes can be attacked but it must be difficult (too slow in practice).

Let n be the security parameter:

- Efficient algorithm = polynomial in n (n^c for constant c),
- Difficult problem = no algorithm in polynomial time, best know algorithm has complexity exponential in n.

Order of magnitude:

- Today, a difficult problem \Rightarrow complexity 2^{80} or 2^{128}
 - ▶ A 3.4GHz processor executes 3.4×10^9 cycles per second
 - ▶ 2^{60} cycles requires 340×10^{6} secondes (around 11 years),
 - 2^{80} is 2^{20} (around 1 million) times 2^{60} ...

Background

$$\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\}$$

- Operations of addition, substraction and multiplication,
- ▶ $(\mathbb{Z}_N, +, \times)$ is a ring.

• Inverse: if a is prime with N, the multiplicative inverse of $a \mod N$ is b such that $ab = 1 \mod N$.

 \rightarrow To find the inverse, use Extended Euclidean algorithm.

- \rightarrow Allows to find (u, v) such that $au + Nv = 1 \mod N$.
- ▶ Particular case: $p \text{ prime} \rightarrow \mathbb{Z}_p = \{1, 2, \dots, p-1\}$ has only inversible elements, $\rightarrow (\mathbb{Z}_p, +, \times)$ is a field.

Background

 $\mathbb{Z}_N^* = \{a \in \{1, \dots, N-1\} | \gcd(a, N) = 1\},\$ it is the set of integers of \mathbb{Z}_N invertible modulo N.

• Euler's totient function: $\varphi(N) = Card(\mathbb{Z}_N^*)$

• If N prime:
$$\varphi(N) = N - 1$$
,

• If $N = \prod_i p_i^{e_i}$ with p_i prime and $e_i > 1$, then $\varphi(N) = \prod_i p_i^{e_i-1}(p_i-1)$.

Euler's Theorem

For N > 1 and $x \in \mathbb{Z}_N^*$, we have that $x^{\varphi(N)} = 1 \mod N$.

Consequence for $x \in \mathbb{Z}_N^*$: $x^a \mod N = x^{a \mod \varphi(N)} \mod N$.

Discrete logarithm problem

If p is prime then Z^{*}_p is a cyclic group of order p − 1.
 It means it has φ(p − 1) generators g such that Z^{*}_p = (1, g, g², · · · , g^{p−2}).

Discrete Logarithm Problem (DLP):

Let G be a finite group (\mathbb{Z}_p^* as example), q its order, g a generator, and g^a where a is uniformly sampled in \mathbb{Z}_q , find a.

This problem can be difficult to solve or easy, it depends on the group!

- Historical choice: \mathbb{Z}_p^* with p prime,
- Bad choice possible,
- ► Good choice: quadratic residues subgroup of Z^{*}_p,
- Today: elliptic curves.

DLP and its variants

Discrete Logarithm Problem (DLP):

Let *G* be a finite group, *q* its order, *g* a generator, and g^a where *a* is uniformly sampled in \mathbb{Z}_q , find *a*.

Computational Diffie-Hellman problem (CDH):

Let *G* be a finite group, *q* its order, *g* a generator, and g^a , g^b where *a* and *b* are uniformly sampled in \mathbb{Z}_q , compute g^{ab} .

Decisional Diffie-Hellman problem (DDH):

Given g a generator, distinguish between the distribution (g^a, g^b, g^{ab}) and (g^a, g^b, g^c) where a, b and c are uniformly sampled in \mathbb{Z}_q .

DLP and its variants

Discrete Logarithm Problem (DLP):

Let *G* be a finite group, *q* its order, *g* a generator, and g^a where *a* is uniformly sampled in \mathbb{Z}_q , find *a*.

Computational Diffie-Hellman problem (CDH):

Let *G* be a finite group, *q* its order, *g* a generator, and g^a , g^b where *a* and *b* are uniformly sampled in \mathbb{Z}_q , compute g^{ab} .

Decisional Diffie-Hellman problem (DDH):

Given g a generator, distinguish between the distribution (g^a, g^b, g^{ab}) and (g^a, g^b, g^c) where a, b and c are uniformly sampled in \mathbb{Z}_q .

DLP is the hardest to solve,

There exists groups where DDH is easy to solve but CDH difficult.

DDH experiment

Given an algorithm \mathcal{G} which generates a group \mathbb{G} :

$$\frac{\mathcal{C} \qquad \qquad \mathcal{B}}{(\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n)} \\
x, y \leftarrow U(\mathbb{Z}_q) \\
\text{RAND } (b = 0): z \leftarrow U(\mathbb{Z}_q) \\
\text{DDH } (b = 1): z = xy \qquad \xrightarrow{(g, g^x, g^y, g^z)} \\
\text{output } b' \\
Adv(\mathcal{B}) = \left| \Pr[\mathcal{B} \xrightarrow{RAND} 1] - \Pr[\mathcal{B} \xrightarrow{DDH} 1] \right|.$$

Definition

The DDH problem is difficult to solve for a group G if for all Probabilistic Polynomial Time (PPT) algorithm B, there exists a negligible function negl(n) such that:

 $Adv(\mathcal{B}) \leq negl(n).$

Probabilities are taken over the experiment in which $\mathcal{G}(1^n)$ outputs (\mathbb{G}, q, g) then uniform $x, y, z \in \mathbb{Z}_q$ are chosen.

- Exhaustive search: the security parameter n is the number of bits of q (the order of the group) i.e. log q = n. Brute-force search: exponential in n.
- ▶ Best known algorithm: the general number field sieve (NFS). Complexity in $\exp(O(n)^{1/3}(\log n)^{2/3})$

ElGamal encryption

► Key generation: generate (\mathbb{G} , q, g) (publics), then sample an uniform x, and compute $h = g^x$, Secret key: sk = x, Public key: $pk = g^x$.

▶ Enc: given $pk = g^x$ and a message $m \in \mathbb{G}$, choose y uniform and output $(g^y, h^y \cdot m)$.

• **Dec:** given sk = x and (c_1, c_2) , output $m = c_2/c_1^x$.

Correctness: $\frac{c_2}{c_1^x} = \frac{h^{y} \cdot m}{g^{xy}} = \frac{g^{xy} \cdot m}{g^{xy}} = m.$

Security

If the DDH problem is difficult to solve, then the ElGamal encryption scheme is IND-CPA secure.

Principe d'une preuve de sécurité

Security proof: show that if an adversary can succeed in attacking the scheme with a non negligible advantage, then it is possible to solve a difficult problem (DDH).

show that if I know how to solve B then I know how to solve A: \Rightarrow if A is difficult to solve, then so is B.

We start with an instance A (instance of DDH : (g, g^x, g^y, g^z)) and an oracle for B (which is the hypothesis that an adversary can successfully attack).

Idea: given the instance of DDH, we build one from the IND-CPA experiment and we use the answer of the adversary to solve DDH.

We recall the DDH experiment:

$$\begin{array}{c} \mathcal{C} & \mathcal{B} \\
\hline (\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n) \\
x, y \leftarrow U(\mathbb{Z}_q) \\
\end{array}$$
RAND $(b = 0)$: $z \leftarrow U(\mathbb{Z}_q)$
DDH $(b = 1)$: $z = xy$

$$\xrightarrow{(g, g^x, g^y, g^z)} output b' \\
\hline Adv(\mathcal{B}) = \left| \Pr[\mathcal{B} \xrightarrow{RAND} 1] - \Pr[\mathcal{B} \xrightarrow{DDH} 1] \right|.$$

Idea: given the instance of DDH, we build one from the IND-CPA experiment and we use the answer of the adversary to solve DDH.

We then recall the IND-CPA security game:

 $\begin{array}{c|c} \mathcal{B} & \mathcal{A} \\ (sk = x, pk = g^x) \leftarrow KeyGen(.) & \xrightarrow{pk = g^x} \\ \hline choose \ b & \xleftarrow{m_0, m_1} & Chooses \ m_0, m_1, \\ computes \ (c_1, c_2) \leftarrow Enc(pk, m_b) & \xrightarrow{c_1, c_2} & Computes \ a \ bit \ b' \\ & \text{if } b = b' \ then \ output \ Win \end{array}$

We want to show that if DDH is difficult to solve, then there exists a negligible function negl such that que:

 $\Pr[\mathcal{A} \text{ Win}] \le 1/2 + negl(n).$

We have an algorithm ${\mathcal B}$ which wants to solve DDH using ${\mathcal A}.$

View of \mathcal{B} :

If RAND: z is uniformly distributed so c₂ too. A cannot distinguish between two ciphertexts: its advantage is zero, the probability that B outputs 1 is then 1/2.

$$\Pr[\mathcal{B} \xrightarrow{RAND} 1] = 1/2,$$

We have an algorithm ${\mathcal B}$ which wants to solve DDH using ${\mathcal A}.$

View of \mathcal{B} :

If DDH: z = xy and the ciphertext is exactly an ElGamal ciphertext. The probability that B outputs 1 is exactly the success probability of A dans le in the IND-CPA security game (as it has the same view).

 $\Pr[\mathcal{B} \xrightarrow{DDH} 1] = \Pr[\mathcal{A} \text{ win}],$

To conclude, we have: $\Pr[\mathcal{B} \xrightarrow{RAND} 1] = 1/2,$ $\Pr[\mathcal{B} \xrightarrow{DDH} 1] = \Pr[\mathcal{A} \text{ win}],$ donc :

$$Adv(\mathcal{B}) = |\Pr[\mathcal{B} \xrightarrow{RAND} 1] - \Pr[\mathcal{B} \xrightarrow{DDH} 1]|$$
$$= |\Pr[\mathcal{A} \text{ win}] - 1/2|$$

Finally:

- ► As DDH is a difficult problem, we know there exists a negligible function negl such that $Adv(\mathcal{B}) \leq negl$ then $\Pr[\mathcal{A} \text{ win}] \leq 1/2 + negl$.
- We suppose that A successfully attack, then there exists a non negligible ε such that Pr[A win] ≥ 1/2 + ε, then Adv(B) ≥ ε which implies there exists a distinguisher for the DDH problem.

Today: an introduction to (lattice-based) cryptography

- 1. El Gamal encryption scheme
 - Background
 - Discrete logarithm problem
 - El Gamal scheme and its security
- 2. Regev's encryption scheme
 - Lattices and hard problem on lattices
 - Learning With Errors problem
 - How to encrypt using LWE?
 - Practical scheme using Module-LWE

Post-quantum cryptography

Let's go back to the example: you want to send a message to someone.

Two possibilities:

- Either you share a secret key,
- Either you don't
 - \Rightarrow public key cryptography (RSA...).

Solve a difficult algorithmic problem ⇔ Adversa Examples: factorisation, discrete log

Solving those problems needs an exponential complexity on a classical computer.

Shor's algorithm (1995): polynomial time on a quantum computer.

Context

\rightarrow need alternatives

- Post-quantum secure,
- Efficient,
- New functionalities, different types of constructions.

NIST competition

From 2017 to 2024, NIST competition to develop new standards on post-quantum cryptography

Total: 69 accepted submissions (round 1)

- ► Signature (5 lattice-based),
- Public key encryption / Key Encapsulation Mechanism (21 lattice-based)

Other candidates: 17 code-based PKE, 7 multivariate signatures, 3 hash-based signatures, 7 from "other" assumptions (isogenies, PQ RSA ...) and 4 attacked + 5 withdrawn.

⇒ lattice-based constructions are very serious candidates
 5 over 7 finalists are lattice-based
 2022 first results: 3 over 4 new standards are lattice-based

Why lattice-based cryptography?

- Likely to resist attacks from quantum computers,
- Strong security guarantees, from well-understood hard problems on lattices.
- Novel and powerful cryptographic functionalities,
 - Public key encryption and signature scheme (practical),
 - Advanced signature (group signature ...), and encryption scheme (IBE, ABE, ...),
 - Fully homomorphic encryption.

Lattices

Lattice

 $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\}$, where the $(\mathbf{b}_i)_{1 \leq i \leq n}$'s, linearly independent vectors, are a basis of $\mathcal{L}(\mathbf{B})$.

Lattices

Several basis define a lattice, some are better.

Lattices

- Several basis define a lattice, some are better.
- The first minimum λ_1 is the norm of the smallest non-zero vector.
Lattices

- Several basis define a lattice, some are better.
- The first minimum λ_1 is the norm of the smallest non-zero vector.
- The *n*-th minima λ_n is the radius of a sphere which contains *n* linearly independent shortest vectors of the lattices.

Lattices

- Several basis define a lattice, some are better.
- The first minimum λ_1 is the norm of the smallest non-zero vector.
- The *n*-th minima λ_n is the radius of a sphere which contains *n* linearly independent shortest vectors of the lattices.
- ► The fundamental parallelepiped is defined by $\mathcal{P}(\mathbf{B}) = \{\sum_{i=1}^{n} c_i \mathbf{b}_i : c_i \in [0, 1)\}.$ Its volume defines the volume of the lattice: det(Λ) = |det(\mathbf{B})|.

Lattices

- The first minimum λ_1 is the norm of the smallest non-zero vector.
- The *n*-th minima λ_n is the radius of a sphere which contains *n* linearly independent shortest vectors of the lattices.
- The fundamental parallelepiped is defined by $\mathcal{P}(\mathbf{B}) = \{\sum_{i=1}^{n} c_i \mathbf{b}_i : c_i \in [0,1)\}.$ Its volume defines the volume of the lattice: det(Λ) = |det(\mathbf{B})|.

Minkowski Theorem:

$$\lambda_1(\Lambda) \le \sqrt{n} \cdot \det(\Lambda)^{1/n},$$
$$\left(\prod_{i=1}^n \lambda_i(\Lambda)\right)^{1/n} \le \sqrt{n} \cdot \det(\Lambda)^{1/n}.$$

Shortest Vector Problem (SVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension *n*:

Output: find the shortest non-zero vector $\mathbf{x} \in \mathcal{L}(\mathbf{B})$.

Approx Shortest Vector Problem (Approx SVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension *n*:

Output: find a non-zero vector $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \leq \gamma \lambda_1(\mathcal{L}(\mathbf{B}))$

Gap Shortest Vector Problem (GapSVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n and d > 0:

Output: • YES: there is $\mathbf{z} \in \mathcal{L}(\mathbf{B})$ non-zero such that $\|\mathbf{z}\| < d$,

• NO: for all non-zero vectors $\mathbf{z} \in \mathcal{L}(\mathbf{B})$: $\|\mathbf{z}\| \ge d$.

Gap Shortest Vector Problem (GapSVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n and d > 0:

Output: • YES: there is z ∈ L(B) non-zero such that ||z|| < d,
• NO: for all non-zero vectors z ∈ L(B): ||z|| ≥ γd.

Closest Vector Problem

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n and $\mathbf{t} \in \mathbb{Z}^m$:

Output: find $\mathbf{x} \in \mathbb{Z}^n$ minimizing $||\mathbf{B}\mathbf{x} - \mathbf{t}||$. Approx variant: find $\mathbf{x} \in \mathbb{Z}^n$ such that $||\mathbf{B}\mathbf{x} - \mathbf{t}|| \leq \gamma \cdot \operatorname{dist}(\mathbf{t}, \Lambda(\mathbf{B}))$.

Closest Vector Problem

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n and $\mathbf{t} \in \mathbb{Z}^m$:

Output: find $\mathbf{x} \in \mathbb{Z}^n$ minimizing $||\mathbf{B}\mathbf{x} - \mathbf{t}||$. Approx variant: find $\mathbf{x} \in \mathbb{Z}^n$ such that $||\mathbf{B}\mathbf{x} - \mathbf{t}|| \leq \gamma \cdot \operatorname{dist}(\mathbf{t}, \Lambda(\mathbf{B}))$.

How hard is it to solve those problems?

Hardness of Approx SVP $_{\gamma}$

Conjecture

There is no polynomial time algorithm that approximates this lattice problem and its variants to within polynomial factors.

At the heart of lattice-based cryptography the Learning With Errors problem

Introduced by Regev in 2005

Problem: solve a linear system with *m* equations and *n* variables $(m \ge n)$, with noise, and modulo an integer *q*.

Find $(s_1, s_2, s_3, s_4, s_5)$ such that:

$s_1 + 22s_2 + 17s_3 + 2s_4 + s_5$	\approx	16	$\mod 23$
$3s_1 + 2s_2 + 11s_3 + 7s_4 + 8s_5$	\approx	17	$\mod 23$
$15s_1 + 13s_2 + 10s_3 + 3s_4 + 5s_5$	\approx	3	$\mod 23$
$17s_1 + 11s_2 + 20s_3 + 9s_4 + 3s_5$	\approx	8	$\mod 23$
$2s_1 + 14s_2 + 13s_3 + 6s_4 + 7s_5$	\approx	9	$\mod 23$
$4s_1 + 21s_2 + 9s_3 + 5s_4 + s_5$	\approx	18	$\mod 23$
$11s_1 + 12s_2 + 5s_3 + s_4 + 9s_5$	\approx	$\overline{7}$	$\mod 23$

Gaussian distributions

Continuous Gaussian distribution of center *c* and parameter *s*:

$$\begin{vmatrix} D_{s,c}(x) \sim \frac{1}{s} \exp\left(-\pi \frac{||x-c||^2}{s^2}\right) \\ \forall x \in \mathbb{R} \end{vmatrix}$$

Gaussian distributions

Continuous Gaussian distribution of center c and parameter s:

$$D_{s,c}(x) \sim \frac{1}{s} \exp\left(-\pi \frac{||x-c||^2}{s^2}\right)$$

$$\forall x \in \mathbb{R}$$

Gaussian distribution on \mathbb{Z} of center c with parameter s:

$$\begin{array}{l} D_{\mathbb{Z},s,c}(x) \sim \frac{1}{s} \exp\left(-\pi \frac{||x-c||^2}{s^2}\right) \\ \forall x \in \mathbb{Z} \end{array}$$

- It is not the rounding of the continuous Gaussian.
- We now how to sample it efficiently.
- Almost all samples are in $[-t \cdot s, +t \cdot s]$ for a constant *t*, if *s* is not to small.

Theorem (Gentry, Peikert, Vaikuntanathan 2008)

There exists a PPT algorithm which, given a basis **B** of a lattice $\Lambda(\mathbf{B})$ of dimension n, a parameter $s \ge \|\mathbf{\tilde{B}}\| \cdot \omega(\sqrt{\log n})$, an a center $c \in \mathbb{R}^n$, outputs a sample from a distribution statistically close from $D_{\Lambda,s,c}$.

Intuition: sampling on \mathbb{Z} is quite easy, it is more complicated on a general lattice.

Important: Better is the basis (with short vectors), smaller is the parameter we can sample with, and then have short vectors.

The Learning With Errors problem [Regev 05]

Let n > 1, $q \ge 2$ and $\alpha \in]0, 1[$. For any $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $\mathcal{D}_{n,q,\alpha}(\mathbf{s})$ by:

$$(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$$
, with $\mathbf{a} \leftarrow U(\mathbb{Z}_q^n)$ and $e \leftarrow D_{\mathbb{Z}, \alpha q}$.

Search LWE

For any **s**: find **s** given an arbitrary number of samples from $\mathcal{D}_{n,q,\alpha}(\mathbf{s})$.

Decision LWE

With non-negligible probability on $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $\mathcal{D}_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$.

Decision version

Let n > 1, $q \ge 2$ and $\alpha \in]0, 1[$. For any $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $\mathcal{D}_{n,q,\alpha}(\mathbf{s})$ by:

$$(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$$
, with $\mathbf{a} \leftarrow U(\mathbb{Z}_q^n)$ and $e \leftarrow D_{\mathbb{Z}, \alpha q}$.

Decision LWE

With non-negligible probability on $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $\mathcal{D}_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$.

We consider an oracle $\ensuremath{\mathcal{O}}$ which produces independant samples, all from the same distribution being:

- either $\mathcal{D}_{n,q,\alpha}(\mathbf{s})$ for a fixed \mathbf{s} ,
- either $U(\mathbb{Z}_q^{n+1})$.

The goal is to decide which one with a non-negligeable advantage.

The Learning With Errors problem

 $\mathsf{LWE}^n_{\alpha,q}$

Search version: Given $(\mathbf{A}, \mathbf{b} = \mathbf{As} + \mathbf{e})$, find s. Decision version: Distinguish from (\mathbf{A}, \mathbf{b}) with b uniform.

- Easy reduction : from decision to search
 - find $\mathbf{s} \Rightarrow$ distinguish **b** uniform or **b** LWE sample,

- Easy reduction : from decision to search
 - find $\mathbf{s} \Rightarrow$ distinguish **b** uniform or **b** LWE sample,
 - ► Given (**A**, **b**), find the oracle to find **s**, compute **b As**:

- Easy reduction : from decision to search
 - find $\mathbf{s} \Rightarrow$ distinguish **b** uniform or **b** LWE sample,
 - ► Given (**A**, **b**), find the oracle to find **s**, compute **b As**:
 - ▶ if it is small, then **b** is an LWE sample,
 - ▶ if it looks uniform, then **b** is uniform.

- Easy reduction : from decision to search
 - find $\mathbf{s} \Rightarrow$ distinguish **b** uniform or **b** LWE sample,
 - ► Given (**A**, **b**), find the oracle to find **s**, compute **b** − **As**:
 - ▶ if it is small, then **b** is an LWE sample,
 - ▶ if it looks uniform, then **b** is uniform.
- 2nd reduction: from search to decision
 - Distinguish **b** uniform from **b** LWE sample \Rightarrow find **s**,

- Easy reduction : from decision to search
 - find $\mathbf{s} \Rightarrow$ distinguish **b** uniform or **b** LWE sample,
 - ► Given (**A**, **b**), find the oracle to find **s**, compute **b** − **As**:
 - ▶ if it is small, then **b** is an LWE sample,
 - ▶ if it looks uniform, then **b** is uniform.
- 2nd reduction: from search to decision
 - Distinguish **b** uniform from **b** LWE sample \Rightarrow find **s**,
 - ► Given (A, b) use the oracle to find each coordinate of s: for all s^{*}₁, choose u uniform in Z_q and modify (A, b) as follow:

$$(\mathbf{a}, b) + (u, 0, \dots, 0, us_1^*) = (\mathbf{a}', \langle \mathbf{a}', \mathbf{s} \rangle + e + u(s_1^* - s_1)),.$$

- if $s_1^* = s_1$ it stays a LWE sample,
- else b will be uniform.

Short Integer Solution problem [Ajtai 1996]

For **A** $\leftarrow U(\mathbb{Z}_q^{m \times n})$:

Short Integer Solution problem [Ajtai 1996]

For $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$:

Hardness of LWE

Exhaustive search

- ▶ Try all the $\mathbf{s} \in \mathbb{Z}_q^n \to \text{is } \mathbf{b} \mathbf{As} \text{ small}$? ▶ ⇒ cost around q^n .

Hardness of LWE

Exhaustive search

- Try all the $\mathbf{s} \in \mathbb{Z}_q^n \to \text{is } \mathbf{b} \mathbf{As}$ small?
- ▶ ⇒ cost around q^n .
- Other possibility: guess the *n* first errors, find $\mathbf{s} \rightarrow \mathbf{is} \mathbf{b} \mathbf{As} \mathbf{small}$?
- ► ⇒ cost around $(\alpha q \sqrt{n})^n$.

Hardness of LWE

Exhaustive search

- Try all the $\mathbf{s} \in \mathbb{Z}_q^n \to \text{is } \mathbf{b} \mathbf{As}$ small?
- ▶ \Rightarrow cost around q^n .
- Other possibility: guess the n first errors, find $\mathbf{s} \rightarrow \mathbf{is} \mathbf{b} \mathbf{As} \mathbf{small}$?
- ► ⇒ cost around $(\alpha q \sqrt{n})^n$.
- How to do better?
 - LWE is a lattice problem: consider

 $\Lambda_q(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{Z}^m : \mathbf{y} = \mathbf{As} \bmod q \text{ for } \mathbf{s} \in \mathbb{Z}^n \}.$

Solving LWE \Leftrightarrow solving CVP in this lattice.

• Cost:
$$\left(\frac{n\log q}{\log^2 \alpha}\right)^{\frac{n\log q}{\log^2 \alpha}}$$

Hardness of the Learning With Errors problem

LWE variants

Choose another distribution for the secret or the error. Regev 2009: uniform secret and gaussian error.

Hardness of the Learning With Errors problem

- Applebaum, Cash, Peikert, Sahai 2009 same error and secret
- Goldwasser, Kalai, Peikert, Vaikuntanathan 2010 binary secret
- Brakerski, Langlois, Peikert, Regev, Stehlé 2013 binary secret
- Micciancio 2018 binary secret
- Brakerski, Döttling 2020 entropic secret

Using LWE to build provable constructions - theory

Public key encryption

Parameters: $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,

► Keys: $\mathbf{sk} = \mathbf{s}$ and $\mathbf{pk} = (\mathbf{A}, \mathbf{b})$, with $\mathbf{b} = \mathbf{A} \mathbf{s} + \mathbf{e} \mod q$ where $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$, $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$, $\mathbf{e} \leftrightarrow D_{\mathbb{Z}^m, \alpha q}$.

- **Parameters:** $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,
- ► Keys: sk = s and pk = (A, b), with $b = A s + e \mod q$ where $s \leftrightarrow U(\mathbb{Z}_q^n)$, $A \leftrightarrow U(\mathbb{Z}_q^{m \times n})$, $e \leftrightarrow D_{\mathbb{Z}^m, \alpha q}$.
- Encryption $(M \in \{0,1\})$: Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

► Keys: sk = s and pk = (A, b), with $b = A s + e \mod q$ where $s \leftrightarrow U(\mathbb{Z}_q^n)$, $A \leftrightarrow U(\mathbb{Z}_q^{m \times n})$, $e \leftrightarrow D_{\mathbb{Z}^m, \alpha q}$.

• Encryption $(M \in \{0,1\})$: Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

If close from 0: return 0, if close from $\lfloor q/2 \rfloor$: return 1.

- **Parameters**: $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,
- ► Keys: sk = s and pk = (A, b), with b = A s + e mod q where s $\leftarrow U(\mathbb{Z}_q^n)$, A $\leftarrow U(\mathbb{Z}_q^{m \times n})$, e $\leftarrow D_{\mathbb{Z}^m, \alpha q}$.
- Encryption $(M \in \{0,1\})$: Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

Decryption of (\mathbf{u}, v) : compute $v - \mathbf{u}^T \mathbf{s}$,

r
A b + **e** +
$$\lfloor q/2 \rfloor \cdot M -$$
 b = small + $\lfloor q/2 \rfloor \cdot M$

LWE hard \Rightarrow Regev's scheme is IND-CPA secure.
Correction

The randomness **r** is uniformly chosen in $\{0, 1\}^m$,

and **e** is sampled from a discrete gaussian of parameter $\alpha q \leq q/(8m)$, then, with overwhealming probability,

$$\left|\sum_{i\leq m} r_i e_i\right| \leq \|\mathbf{r}\| \cdot \|\mathbf{e}\| \leq \sqrt{m} \cdot \frac{q}{8\sqrt{m}} = \frac{q}{8}$$

 $v - \mathbf{u}^T \mathbf{s}$ is either close from 0, either close from $\lfloor q/2 \rfloor$, which allows to find M.

IND-CPA security

To define the security, we use a game between a challenger and an adversary. We define the following experiment:

 $Adv^{CPA}(\mathcal{A}) = |\Pr[\mathcal{A} \text{ wins}] - 1/2|$

IND-CPA security

Goal of the proof: show that if an adversary succeed in attacking the encryption scheme with a non-negligible advantage, then the challenger can use it to solve a difficult problem (here LWE).

Decision LWE can also be seen as a game:

$$\begin{array}{ccc}
\mathcal{C} & \mathcal{B} \\
\hline \mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n}) \\
\text{RAND } (b = 0): \mathbf{b} \leftarrow U(\mathbb{Z}_q^m) \\
\text{LWE } (b = 1): \mathbf{b} = \mathbf{As} + \mathbf{e} & \xrightarrow{(\mathbf{A}, \mathbf{b})} \\
\hline & & \text{output } b' \\
\hline & & Adv(\mathcal{B}) = \left| \Pr[\mathcal{B} \xrightarrow{RAND} 1] - \Pr[\mathcal{B} \xrightarrow{LWE} 1] \right|.
\end{array}$$

Let $m, n, q \ge 1$ be integers such that $m \ge 4n \log q$ and q prime, and let $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{r} \leftrightarrow U(\{0, 1\}^m)$. Then $(\mathbf{A}, \mathbf{r}^T \mathbf{A})$ has statistical distance $\le 2^{-n}$ from the uniform distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^n$.

Let $m, n, q \ge 1$ be integers such that $m \ge 4n \log q$ and q prime, and let $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{r} \leftrightarrow U(\{0, 1\}^m)$. Then $(\mathbf{A}, \mathbf{r}^T \mathbf{A})$ has statistical distance $\le 2^{-n}$ from the uniform distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^n$.

• Statistical distance : $\Delta(D_1, D_2) = \frac{1}{2} \sum_x |D_1(x) - D_2(x)|$.

Let $m, n, q \ge 1$ be integers such that $m \ge 4n \log q$ and q prime, and let $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{r} \leftrightarrow U(\{0, 1\}^m)$. Then $(\mathbf{A}, \mathbf{r}^T \mathbf{A})$ has statistical distance $\le 2^{-n}$ from the uniform distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^n$.

- Statistical distance : $\Delta(D_1, D_2) = \frac{1}{2} \sum_x |D_1(x) D_2(x)|$.
- For any algorithm \mathcal{A} , we have $|\Pr[\mathcal{A}(D_1) = 1] - \Pr[\mathcal{A}(D_2) = 1]| \leq \Delta(D_1, D_2).$ $\Delta(D_1, D_2)$ small $\Rightarrow D_1$ and D_2 are statistically indistinguishable.

Let $m, n, q \ge 1$ be integers such that $m \ge 4n \log q$ and q prime, and let $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{r} \leftrightarrow U(\{0, 1\}^m)$. Then $(\mathbf{A}, \mathbf{r}^T \mathbf{A})$ has statistical distance $\le 2^{-n}$ from the uniform distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^n$.

• Statistical distance : $\Delta(D_1, D_2) = \frac{1}{2} \sum_x |D_1(x) - D_2(x)|$.

For any algorithm \mathcal{A} , we have $|\Pr[\mathcal{A}(D_1) = 1] - \Pr[\mathcal{A}(D_2) = 1]| \leq \Delta(D_1, D_2).$ $\Delta(D_1, D_2)$ small $\Rightarrow D_1$ and D_2 are statistically indistinguishable.

The LHL implies that ((A b) , ${\color{black} r}$ (A b)) is indistinguishable from uniform.

Idea: we start from an LWE instance, and build an instance of the IND-CPA experiment, then we use the answer of the adversary to solve LWE. We use the following IND-CPA game:

 $\begin{array}{c|c} \mathcal{B} & \mathcal{A} \\ (sk = \mathbf{s}, pk = (\mathbf{A}, \mathbf{b} = \mathbf{As} + \mathbf{e}) \leftarrow KeyGen(.) & \xrightarrow{pk = (\mathbf{A}, \mathbf{b})} \\ \text{chooses } b & \xleftarrow{m_0, m_1} & \text{Chooses } m_0, m_1, \\ \text{computes } (\mathbf{u}, v) \leftarrow Enc(pk, m_b) & \xrightarrow{(\mathbf{u}, v)} & \text{Computes a bit } b' \\ & \text{if } b = b' \text{ then output Win} \end{array}$

We want to show that if LWE is hard, then there exists a negligible function *negl* such that:

 $\Pr[\mathcal{A} \text{ Win}] \le 1/2 + negl(n).$

${\mathcal B}$ wants to solve decisional LWE using ${\mathcal A}.$

For \mathcal{B} :

► RAND: **b** is uniform then v is uniform. A cannot distinguish between the two cases, its advantage is equals to zero, the probability that B outputs 1 is 1/2.

$$\Pr[\mathcal{B} \xrightarrow{RAND} 1] = 1/2$$

 ${\mathcal B}$ wants to solve decisional LWE using ${\mathcal A}.$

 $\begin{array}{c|c} \mathcal{C} & \mathcal{B} & \mathcal{A} \\ \hline \text{RAND:$ **b** $unif} \\ \text{LWE:$ **b**=**As**+**e** $& \xrightarrow{(\mathbf{A}, \mathbf{b})} & m_0, m_1, \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$

For \mathcal{B} :

LWE: b = As + e and then the ciphertext is exactly a ciphertext from the Regev encryption scheme. The probability that B outputs 1 is exactly the success probability of A in the encryption scheme security game (as it has the same view of the experiment).

$$\Pr[\mathcal{B} \xrightarrow{LWE} 1] = \Pr[\mathcal{A} \text{ win}],$$

To conclude, we have:

 $\Pr[\mathcal{B} \xrightarrow{RAND} 1] = 1/2,$ $\Pr[\mathcal{B} \xrightarrow{LWE} 1] = \Pr[\mathcal{A} \text{ win}],$

then:

$$Adv(\mathcal{B}) = |\Pr[\mathcal{B} \xrightarrow{RAND} 1] - \Pr[\mathcal{B} \xrightarrow{LWE} 1]|$$
$$= |\Pr[\mathcal{A} \text{ win}] - 1/2|$$

If \mathcal{A} succeeds with a non-negligible probability, then there exists ε such that $\Pr[\mathcal{A} \text{ win}] \geq 1/2 + \varepsilon$, then $Adv(\mathcal{B}) \geq \varepsilon$ which implies that there exists a distinguisher able to solve the decisional LWE problem.

Hardness of SIS/LWE used as a foundation for many constructions.

Solutions used today?

Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured) variants of LWE.

- Public Key Encryption
 - Crystals Kyber: Module-LWE with both secret and noise chosen from a centered binomial distribution.
 - Saber: Module-LWR (deterministic variant).
 - NTRU
 - **FrodoKEM** (as alternate candidate): LWE but with smaller parameters.

Signature

- Crystals Dilithium: Module-LWE with both secret and noise chosen in a small uniform interval, and Module-SIS.
- **Falcon**: Ring-SIS on NTRU matrices.

Using SIS/LWE to build constructions

Using SIS/LWE to build constructions in practice

Using SIS/LWE to build constructions in practice

58 / 73

From SIS/LWE to structured variants

Problem: constructions based on LWE enjoy a nice guaranty of security but are too costly in practice.

- ightarrow replace \mathbb{Z}^n by a Ring, for example $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ $(n = 2^k)$.
- Ring variants since 2006:

- Structured $\mathbf{A} \in \mathbb{Z}_q^{m \cdot n \times n}$ represented by $m \cdot n$ elements,
- Product with matrix/vector more efficient,
- ► Hardness of Ring-SIS,

[Lyubashevsky and Micciancio 06] and [Peikert and Rosen 06]

Hardness of Ring-LWE [Lyubashevsky, Peikert and Regev 10].

Idea: replace \mathbb{Z}^n by $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$

where $n = 2^k$ then the polynomial $x^n + 1$ is irreducible. Elements of this ring are polynomials of degree less than n.

R is isomorph to \mathbb{Z}^n

Let $a \in R$, we have $a(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$, the isomorphism $R \to \mathbb{Z}^n$ associate the polynomial $a \in R$ to the vector $\mathbf{a} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} \in \mathbb{Z}^n$. Idea: replace \mathbb{Z}^n by $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$

Let's look at the product of two polynomials $x^n + 1$

•
$$a(x) = a_0 + a_1 \cdot x + \ldots + a_{n-1} \cdot x^{n-1}$$

• $s(x) = s_0 + a_1 \cdot x + \ldots + a_{n-1} \cdot x^{n-1}$

Using matrices, it gives the following block:

$$\begin{bmatrix} a_0 & -a_{n-1} & \cdots & -a_2 & -a_1 \\ a_1 & a_0 & \cdots & -a_3 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-2} & a_{n-3} & \cdots & a_0 & -a_{n-1} \\ a_{n-1} & a_{n-2} & \cdots & a_1 & a_0 \end{bmatrix} \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-2} \\ s_{n-1} \end{bmatrix}$$

Module LWE

Let *K* be a number field of degree *n* with *R* its ring of integers. Think of *K* as $\mathbb{Q}[x]/(x^n+1)$ and of *R* as $\mathbb{Z}[x]/(x^n+1)$ for $n = 2^k$.

Replace \mathbb{Z} by R, and \mathbb{Z}_q by $R_q = R/qR$.

Special case d = 1 is Ring-LWE

Module SIS and LWE

$$R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$$
 and $R_q = R/qR$.

Let $\alpha > 0$ and $\mathbf{s} \in (R_q)^d$, the distribution $A_{\mathbf{s}, D_{R, \alpha q}}^{(M)}$ is:

- ▶ $\mathbf{a} \in (R_q)^d$ uniform,
- e sampled from $D_{R,\alpha q}$,

Outputs: $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$.

Module-LWE_{q,ν_{α}} Let $\mathbf{s} \in (R_q)^d$ uniform, distinguish between an arbitrary number of samples from $A_{\mathbf{s},D_{R,\alpha q}}^{(M)}$ or the same number from $U((R_q)^d \times R_q)$.

Ideals and modules

- $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ and $R_q = R/qR$.
 - ► An ideal *I* of *R* is an additive subgroup of *R* closed under multiplication by every elements of *R*.
 - ► As *R* is isomorph to \mathbb{Z}^n , any ideal $I \in R$ defines an integer lattice $\Lambda(\mathbf{B})$ where $\mathbf{B} = \{g \mod x^n + 1 : g \in I\}.$
 - A subset $M \subseteq K^d$ is an *R*-module if it is closed under addition and multiplication by elements of *R*.
 - A finite-type *R*-module: $M \subseteq R^d : \sum_{i=1}^D R \cdot \mathbf{b}_i, (\mathbf{b}_i) \in R^d$,
 - $M = \sum_{i=1}^{d} I_i \cdot \mathbf{b}_i$ where I_i are ideals of R and (I_i, \mathbf{b}_i) is a pseudo-basis of M.
 - > As ideals, any module defines an integer module lattice.

Hardness of Ring Learning With Errors problem

• Applebaum, Cash, Peikert, Sahai 2009 - same error and secret

Hardness of Module Learning With Errors problem

Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
 Boudgoust, Jeudy, Roux-Langlois, Wen 2022: short error and secret distributions

Module or Rings?

Choice of parameters

- Example of Ring $R_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$
- Constraints on parameters $n = 2^k$, $q = 1 \mod 2n \dots$
- An example of parameter set:
 - ▶ $n = 512 \Rightarrow$ 60 bits of security,
 - ▶ $n = 1024 \Rightarrow$ 140 bits of security,
 - ▶ (n = 256, d = 3) gives nd = 768 which is "in between".

Module LWE allows more flexibility.

From 2017 to 2024, NIST competition to develop new standards on post-quantum cryptography

2022 first results: 3 over 4 new standards are lattice-based

- Kyber encryption scheme based on Module-LWE,
- Dilithium signature scheme based on Module SIS and LWE,
- ► Falcon signature scheme based on NTRU and Ring-SIS.

Encryption scheme based on Ring-LWE

[Lyubashevsky, Peikert, Regev 2011]

KeyGen : The secret key is a small $s \in R$ The public key is $(a, b) = (a, b = a \cdot s + e) \in R_q^2$, with $a \leftarrow U(R_q)$ and a small $e \in R$.

Enc : Given $m \in \{0,1\}^n$, a message is a polynomial in R with coordinates in $\{0,1\}$. Sample small r, e_1, e_2 in R and output

$$(a \cdot \mathbf{r} + \mathbf{e}_1, b \cdot \mathbf{r} + \mathbf{e}_2 + \lfloor q/2 \rfloor \cdot m) \in R_q \times R_q.$$

Dec : Given $(u, v) \in R_q \times R_q$, compute

$$v - u \cdot s = (r \cdot e - s \cdot e_1 + e_2) + b\lfloor q/2 \rfloor \cdot m$$

For each coordinate of m, the plaintext is 0 if the result is closer from 0 than $\lfloor q/2 \rfloor$, and 1 otherwise.

Kyber

[Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehle]

- ► Kyber relies on Module-LWE,
- Uses $R_q = \mathbb{Z}_q[x]/\langle x^{256} + 1 \rangle$ with q = 7681.
- The small elements follow a binomial distribution B_{η} : For some positive integer η , sample $\{(ai, bi)\}_{i=1}^{\eta} \leftarrow (\{0, 1\}^2)^{\eta}$ and output $\sum_{i=1}^{\eta} (a_i - b_i)$.
- ► The uniform public key is generated given a *seed* and a function PARSE,
- Multiplication operations uses NTT Number Theoretic Transform which is a variant of the FFT in rings,
- Size of ciphertext is compressed by keeping only high order bits.

Performances

Current timings (ECDH) Public key around 32 bytes Efficiency comparable in terms of cycles.

			Kyber-512		
Sizes (in bytes)		Haswell cycles (ref)		Haswell cycles (avx2)	
sk:	1632	gen:	122684	gen:	33856
pk:	800	enc:	154524	enc:	45200
ct:	768	dec:	187960	dec:	34572
Kyber-768					
Sizes (in bytes)		Haswell cycles (ref)		Haswell cycles (avx2)	
sk:	2400	gen:	199408	gen:	52732
pk:	1184	enc:	235260	enc:	67624
ct:	1088	dec:	274900	dec:	53156
Kyber-1024					
Sizes (in bytes)		Haswell cycles (ref)		Haswell cycles (avx2)	
sk:	3168	gen:	307148	gen:	73544
pk:	1568	enc:	346648	enc:	97324
ct:	1568	dec:	396584	dec:	79128

Choice of parameters

Parameters used by Kyber:

▶ n = 256 and d = 2, 3, 4 giving three levels of security: 512, 768, 1024,

$$q = 7681$$

Choice of parameters

- Parameters used by Kyber:
 - ▶ n = 256 and d = 2, 3, 4 giving three levels of security: 512, 768, 1024,

$$q = 7681$$

- How do they choose the parameters?
 - ▶ By considering the LWE instance with dimension *nd*,
 - ▶ and the "lattice estimator" [Albrecht, Player, Scott 2015],

Choice of parameters

- Parameters used by Kyber:
 - ▶ n = 256 and d = 2, 3, 4 giving three levels of security: 512, 768, 1024,
 - ▶ q = 7681
- How do they choose the parameters?
 - ▶ By considering the LWE instance with dimension *nd*,
 - ▶ and the "lattice estimator" [Albrecht, Player, Scott 2015],
- There is no consideration of the structure!
 - ► Why?
 - Because we don't know how...

Using LWE to build constructions in practice

Conclusion

- Lattice-based cryptography allows to build efficient constructions such as encryption or signature schemes with a security based on the hardness of difficult algorithmic problems on lattices.
- Three schemes (Kyber, Dilithium and Falcon) will be standardise by the NIST, together with a hash-based signature. Two of them are based on Module-LWE.
- ► Approx Ideal SVP seems to be the easier problem to try to solve → the results of recent attacks does not impact the security of lattice-based constructions.