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Cryptography Y GREYC

Let’s start with a simple example: you want to send a message to someone.
Two possibilities:

» Either you share a secret key (AES...),

» Either you don’t = public key cryptography.
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Public key cryptography 5% GREYC
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Public key cryptography
Generate two

Want to send keys pk, sk
amessage M @ Lk

. and keep sk
¢ = Encrypt(pk, M) —) .

M = Decrypt(sk,C)

Adversary < solve a difficult algorithmic problem

» Examples: factorisation (RSA), discrete log (El Gamal) ...

» What does it mean to be difficult? Solving those problems needs an exponential
complexity on a classical computer.

———



Public key encryption Y GREYC
Generate two
Want to send keys pk, sk
a message M P
and keep sk
¢ = Encrypt(pk, M) —>

M = Decrypt(sk, C)

Definition
A public key encryption scheme is defined by three algorithms (KeyGen, Enc,
Dec) such that:

» KeyGen takes as input the security parameter A and outputs the keys (pk, sk),
» Enc takes as input pk and a message m and outputs ¢ = Enc(pk, m),
» Dec takes as input sk and a cipher ¢ and outputs m = Dec(sk, c),

such that Dec(sk, (Enc(pk,m)) = m.
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Public key encryption Y GREYC

Definition
A public key encryption scheme is defined by three algorithms (KeyGen, Enc,
Dec) such that:

» KeyGen takes as input the security parameter A and outputs the keys (pk, sk),

» Enc takes as input the public key pk and a message m and outputs
¢ = Enc(pk,m),
» Dec takes as input the secret key sk and a cipher ¢ and outputs
m = Dec(sk,c),
such that Dec(sk, (Enc(pk, m)) = m.

Two important properties: correctness and security.



Public key encryption Y GREYC

How do we define security of a public key encryption?
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Public key encryption Y GREYC

How do we define security of a public key encryption?

We use the notion of indistinguishability of the ciphertexts.
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IND-CPA security Y GREYC

To define the security, we use a game between a challenger and an adversary.
We define the following experiment:

Challenger Adversary
b+ U({0,1})
Generate (pk, sk) pk
—
Mo, M, Choose My, M,
%

¢ <+ Enc(pk, My)
— Output v/
Awinsifb =t/

AdvCTA(A) = | Pr[A wins] — 1/2]
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Today: an introduction to (lattice-based) cryptographyi™ GREYC

1. El Gamal encryption scheme

Background
Discrete logarithm problem
El Gamal scheme and its security

2. Regev’s encryption scheme
Lattices and hard problem on lattices
Learning With Errors problem
How to encrypt using LWE?
Practical scheme using Module-LWE
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Security hypothesis Y GREYC

To build a public key encryption scheme, we need:

» a “difficult to inverse” problem: allows to build a public key using a secret key
but not to come back,

» a efficient key generation.

Example of RSA encryption scheme:

» the secret key is (p, ¢) two distinct primes

= we have to be able to generate large prime efficiently
» the public key is N = pq

= the “factorization” problem must be difficult to solve.



Difficult problem vs efficient algorihtm Y GREYC

Computational security: different from a perfect security,
schemes can be attacked
but it must be difficult (too slow in practice).

Let n be the security parameter:
» Efficient algorithm = polynomial in n (n¢ for constant c),

» Difficult problem = no algorithm in polynomial time, best know algorithm has
complexity exponential in n.

Order of magnitude:
» Today, a difficult problem = complexity 289 or 2128

»> A 3.4GHz processor executes 3.4 x 10° cycles per second
» 260 cycles requires 340 x 10° secondes (around 11 years),
> 280 s 229 (around 1 million) times 259 ...
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Background Y GREYC
Zy ={0,1,2,..., N —1}

» Operations of addition, substraction and multiplication,
» (Zn,+, %) is aring.

» Inverse: if a is prime with N, the multiplicative inverse of a mod N is b such
that ab = 1 mod N.
— To find the inverse, use Extended Euclidean algorithm.
— Allows to find (u,v) such that au + Nv = 1 mod N.

» Particular case: p prime — Z, = {1,2,...,p — 1} has only inversible elements,
— (Zp, +, x) is a field.

——— 1178



Background Y GREYC

Zy ={ae{l,...,N —1}|gcd(a, N) = 1},
it is the set of integers of Zy invertible modulo N.

» Euler’s totient function: (V) = Card(Zy,)
> If N prime: p(N) =N —1,
> If N =[], p" with p; prime and e; > 1, then p(N) = [, p¢" " (pi — 1).

Euler's Theorem

For N > 1 and z € Z%,, we have that 2*(Y) = 1 mod N.
Consequence for = € Z%;: 2% mod N = x4 #(\) mod N.

——— 12173



Discrete logarithm problem Y GREYC

> If pis prime then Z; is a cyclic group of order p — 1.
It means it has ¢(p — 1) generators g such that Z, = (1,9,9%, -+ ,g°7?).

Discrete Logarithm Problem (DLP):
Let G be a finite group (Z,, as example), q its order, g a generator, and g* where a
is uniformly sampled in Z,, find a.

This problem can be difficult to solve or easy, it depends on the group!

> Historical choice: Z;, with p prime,

» Bad choice possible,

» Good choice: quadratic residues subgroup of Z7,
» Today: elliptic curves.
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DLP and its variants gy GREYC

Discrete Logarithm Problem (DLP):
Let G be a finite group, q its order, g a generator, and g* where a is uniformly
sampled in Zg, find a.

Computational Diffie-Hellman problem (CDH):
Let G be a finite group, q its order, g a generator, and ¢¢, ¢" where a and b are
uniformly sampled in Z,, compute ¢*°.

Decisional Diffie-Hellman problem (DDH):
Given g a generator, distinguish between the distribution (g2, g*, ¢**) and(¢?, ¢°, %)
where a, b and c are uniformly sampled in Z,.

——— 14173



DLP and its variants gy GREYC

Discrete Logarithm Problem (DLP):
Let G be a finite group, q its order, g a generator, and g* where a is uniformly
sampled in Zg, find a.

Computational Diffie-Hellman problem (CDH):
Let G be a finite group, q its order, g a generator, and ¢¢, ¢" where a and b are
uniformly sampled in Z,, compute ¢*°.

Decisional Diffie-Hellman problem (DDH):
Given g a generator, distinguish between the distribution (g2, g*, ¢**) and(¢?, ¢°, %)
where a, b and c are uniformly sampled in Z,.

DLP is the hardest to solve,
There exists groups where DDH is easy to solve but CDH difficult.

——— 14173



DDH experiment
Given an algorithm G which generates a group G:
C B

(G.q,9) < G(1")
z,y + U(Zyg)

RAND (b = 0): 2 « U(Z,)

DDH (b= 1): 2 = 2y (9.9%,9%,9%)
output b’

Adv(B) = |Pr[B E2Y2, 1) — pr(B 225, ).
Definition
The DDH problem is difficult to solve for a group ¢ if for all Probabilistic Polynomial Time
(PPT) algorithm B, there exists a negligible function negl(n) such that:
Adv(B) < negl(n).

Probabilities are taken over the experiment in which G(1™) outputs (G, g, g) then uniform z,y, z € Z,
are chosen.
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Best known algorithm Y GREYC

» Exhaustive search: the security parameter n is the number of bits of ¢ (the
order of the group) i.e. logq = n.
Brute-force search: exponential in n.

» Best known algorithm: the general number field sieve (NFS).
Complexity in exp(O(n)'/?(logn)?/3)
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ElGamal encryption Y GREYC

» Key generation: generate (G, ¢, g) (publics),
then sample an uniform z, and compute h = ¢*,
Secret key: sk = x, Public key: pk = ¢*.

» Enc: given pk = ¢* and a message m € G,
choose y uniform and output (¢¥, h¥ - m).

» Dec: given sk = = and (¢, ¢2), output m = ca/cf.

Correctness: & = 1om — 92m — 4
1

g%y g*y

Security

If the DDH problem is difficult to solve, then the EIGamal encryption scheme is
IND-CPA secure.

——— 7173



Principe d’une preuve de sécurité Y GREYC

Security proof: show that if an adversary can succeed in attacking the scheme with
a non negligible advantage, then it is possible to solve a difficult problem (DDH).

= it's a reduction between two problems
Reduction from problem A to problem B

)

DDH successfull CPA attack

show that if | know how to solve B then | know how to solve A:
= if A is difficult to solve, then so is B.

We start with an instance A (instance of DDH : (g, ¢*, ¢¥, ¢%)) and an oracle for B (which is
the hypothesis that an adversary can successfully attack).

——— 16173



Security proof £ GREYC

Idea: given the instance of DDH, we build one from the IND-CPA experiment and
we use the answer of the adversary to solve DDH.

We recall the DDH experiment:

C B
(G,q,9) < 6(1")
z,y + U(Zy)

RAND (b = 0): z < U(Z,)
DDH(b=1):z ==

(9,97,9%,9%)
Y E—

output b’

Adv(B) = |Pr[B 2222 1) — pr[B 22, ).

———



Security proof Y GREYC

Idea: given the instance of DDH, we build one from the IND-CPA experiment and
we use the answer of the adversary to solve DDH.

We then recall the IND-CPA security game:

B A
o Ph=g"
(sk = z,pk = ¢*) <+ KeyGen(.) ——
choose b o Chooses my, m1,

c1,C2

computes (c1, co) + Enc(pk,mp) —— Computes a bit ¢’
if b = b’ then output Win

We want to show that if DDH is difficult to solve, then there exists a negligible
function negl such that que:

Pr[A Win] < 1/2 + negl(n).

———



Security proof Y GREYC
We have an algorithm 5 which wants to solve DDH using A.
C B A
RAND: z unif
DDH: z = zy M M mo, M1,
choose b o
C1,C2

(9¥, 97 - my) Computes ¥
ifb=bouputl &

else output 0

View of B:

P If RAND: z is uniformly distributed so ¢, too. A cannot distinguish between two
ciphertexts: its advantage is zero, the probability that B outputs 1 is then 1/2.

Pr[B EANE, 41 = 1/2
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Security proof Y GREYC
We have an algorithm 5 which wants to solve DDH using A.
C B A
RAND: z unif
DDH: z = a2y M M mo, M1,
choose b o

C1,C2

(97,97 - ) Computes ¥/
ifb=0output1 <

else output 0

View of :
» If DDH: z = xy and the ciphertext is exactly an ElIGamal ciphertext. The probability
that B outputs 1 is exactly the success probability of A dans le in the IND-CPA
security game (as it has the same view).

DDH 1]

Pr[B = Pr[.A win),

] 20/73



Security proof

To conclude, we have:

Pr[B A0 4] = 1/,
Pr[B 225, 1] = Pr[A win),
donc :

Adv(B)
Finally:

£ GREYC

Pr(B E22E, 4y _ pr g 221 )

|Pr[A win] — 1/2|

» As DDH is a difficult problem, we know there exists a negligible function negl
such that Adv(B) < negl then Pr[A win] < 1/2 + negl.

> We suppose that A successfully attack, then there exists a non negligible £ such that
Pr[Awin] > 1/2 + ¢, then Adv(B) > ¢ which implies there exists a distinguisher for

the DDH problem.
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Today: an introduction to (lattice-based) cryptographyi™ GREYC

2. Regev’s encryption scheme
Lattices and hard problem on lattices
Learning With Errors problem
How to encrypt using LWE?
Practical scheme using Module-LWE

22/73



Post-quantum cryptography

Let’s go back to the example: you want to send a message to someone.

Two possibilities: amessage vt @ e kkeys 1;&
. eep sk
» Either you share a secret key, € = Encryptipk, 1) . c e e
» Either you don’t o
= public key cryptography (RSA...). /\

Solve a difficult algorithmic problem < Adversary
Examples: factorisation, discrete log

» Solving those problems needs an exponential complexity on a classical computer.
» Shor’s algorithm (1995): polynomial time on a quantum computer.

] 23/73



Context Y GREYC

— need alternatives
» Post-quantum secure,
> Efficient,
» New functionalities, different types of constructions.

Lattice-based cryptography

NIST competition Code-based cryptography

Multivariate, Isogenies, Hash based ...



NIST competition Y GREYC

From 2017 to 2024, NIST competition to develop new standards
on post-quantum cryptography

Total: 69 accepted submissions (round 1)
» Signature (5 lattice-based),

» Public key encryption / Key Encapsulation
Mechanism (21 lattice-based)

Other candidates: 17 code-based PKE, 7 multivariate signatures, 3 hash-based
signatures, 7 from “other” assumptions (isogenies, PQ RSA ...) and 4 attacked + 5
withdrawn.

= lattice-based constructions are very serious candidates
5 over 7 finalists are lattice-based
2022 first results: 3 over 4 new standards are lattice-based

——— 25173



Why lattice-based cryptography? Y GREYC

> Likely to resist attacks from quantum computers,
» Strong security guarantees,

» Novel and powerful cryptographic functionalities,
Public key encryption and signature scheme (practical),
Advanced signature (group signature ...),
and encryption scheme (IBE, ABE, ...),
Fully homomorphic encryption.

» Efficiency

——— 26173



Lattices Y GREYC
L by .
Lattice

L(B) = {>]_, aibi,a; € Z}, where the (b;)1<;<»’s, linearly independent vectors,
are a basis of L(B).

———



Lattices

» Several basis define a lattice, some are better.

Y GREYC



Lattices Y GREYC

» Several basis define a lattice, some are better.
» The first minimum ), is the norm of the smallest non-zero vector.

——— 28173



Lattices

» Several basis define a lattice, some are better.

» The first minimum )\, is the norm of the smallest non-zero vector.

» The n-th minima ), is the radius of a sphere which contains n linearly
independent shortest vectors of the lattices.

Y GREYC
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Lattices

» Several basis define a lattice, some are better.

» The first minimum X, is the norm of the smallest non-zero vector.

» The n-th minima ), is the radius of a sphere which contains n linearly
independent shortest vectors of the lattices.

> The fundamental parallelepiped is defined by P(B) = {>_"" , ¢;b
Its volume defines the volume of the lattice: det(A) =

gy GREYC

€[0,1)}.

28/73



Lattices gy GREYC

» The first minimum \; is the norm of the smallest non-zero vector.

» The n-th minima ), is the radius of a sphere which contains n linearly
independent shortest vectors of the lattices.

> The fundamental parallelepiped is defined by P(B) = {37, ¢;b; : ¢; € [0,1)}.
Its volume defines the volume of the lattice: det(A) = |det(B)].

» Minkowski Theorem:

AL(A) < V- det(A)V7,
n 1/n
(H )\i(A)> < /n - det(A)V™

=1

——— 28173



Shortest Vector Problem (SVP) Y GREYC

Given a lattice £(B) of dimension n:

Output: find the shortest non-zero vector x € £(B).

] 29/73



Approx Shortest Vector Problem (Approx SVP.) %Y GREYC

Given a lattice £(B) of dimension n:

Output: find a non-zero vector x € £(B) such that ||x|| < 71 (£(B))

] 29/73



Gap Shortest Vector Problem (GapSVP) %Y GREYC

Given a lattice £(B) of dimension n and d > 0:

Output: e YES: there is z € £(B) non-zero such that ||z|| < d,
e NO: for all non-zero vectors z € L(B): ||| > d.




Gap Shortest Vector Problem (GapSVP.) %Y GREYC

Given a lattice £(B) of dimension n and d > 0:

Output: e YES: there is z € £(B) non-zero such that ||z|| < d,
e NO: for all non-zero vectors z € L(B): ||z|| > ~d.

000000000000 ONONSIIIIIS L4 . i . i .

0000000006 000000000000 . . . . 1] .



Closest Vector Problem Y GREYC
Given a lattice £(B) of dimension n and t € Z™:

Output: find x € Z™ minimizing ||Bx — t||.
Approx variant: find x € Z™ such that ||Bx — t|| < ~ - dist(t, A(B)).

] 31/73



Closest Vector Problem Y GREYC
Given a lattice £(B) of dimension n and t € Z™:

Output: find x € Z™ minimizing ||Bx — t||.
Approx variant: find x € Z™ such that ||Bx — t|| < ~ - dist(t, A(B)).

How hard is it to solve those problems?



Hardness of Approx SVP, Y GREYC
tOCSOOS|E/e 252(/7‘] 282(n) po|y(,,)
N % \{ﬁ po|¥(/1) 2()}”} .
Complexity NP'harﬁ Crypto P
hardness
NP N CoNP
Conjecture

There is no polynomial time algorithm that approximates this lattice problem and
its variants to within polynomial factors.

] 32/73



At the heart of lattice-based cryptography
the Learning With Errors problem

» Introduced by Regev in 2005

Y GREYC

Problem: solve a linear system with m equations and n variables (m > n), with

noise, and modulo an integer gq.
Find (S] , 89,83, 54, .S';) such that:

51+ 2259 +17s3 + 254 + 55
351+ 250+ 11s3 4+ 7s4 + 8s5
1551 4+ 1352 + 1053 + 3s4 + 5ss
1751 4+ 1152 + 2053 4+ 954 + 355
251 + 14s5 + 1353 + 654 + 7s5
451 + 21so + 9s3 + bss + s5
11s1 + 1255 4+ 5Hs3 + 54+ 9ss

Q

Q

Q

Q

R

Q

16
17

18

mod 23
mod 23
mod 23
mod 23
mod 23
mod 23
mod 23
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Gaussian distributions Y GREYC

Continuous Gaussian distribution of center ¢ and parameter s:

2 / AN
Dyefa) ~ Lesxp (-~ mliel) VRN
Vr e R - N

] 34/73



Gaussian distributions

Continuous Gaussian distribution of center ¢ and parameter s:

A2
DS,C(x) ~ %exp ( — 7-(-||$520|| )

Vz e R / N

Gaussian distribution on Z of center ¢ with parameter s:

—cl12 o
DZ,S,C(J})N%GXP(—W%) AT T

RS
RN B R +
#rtrvileligg *

\V/‘CUEZ PR E Sl B B i i Y

» |t is not the rounding of the continuous Gaussian.
» We now how to sample it efficiently.
» Almost all samples are in [—¢ - s, +t - s] for a constant ¢, if s is not to small.
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hd Al J
Discrete gaussian on lattices 3 GREYC

Theorem (Gentry, Peikert, Vaikuntanathan 2008)

There exists a PPT algorithm which, given a basis B of a lattice A(B) of
dimension n, a parameter s > ||B|| - w(y/logn), an a center c € R", outputs a
sample from a distribution statistically close from Dy .

Intuition: sampling on Z is quite easy, it is more complicated on a general lattice.

Important: Better is the basis (with short vectors), smaller is the parameter we
can sample with, and then have short vectors.

——— 3573



The Learning With Errors problem [Regev 05] Y GREYC
Letn>1,¢>2and «a €]0,1].
For any s € Z, we define the distribution D,, ;. (s) by:

(a,(a,;s) +e), witha < U(Z;) and e < Dz oq-

» Search LWE
For any s: find s given an arbitrary number of samples from D,, , (S).

» Decision LWE
With non-negligible probability on s <— U(Zy): distinguish between the
distributions D,, 4. (s) and U (Z;*1).

——— =



Decision version Y GREYC

Letn >1,¢>2and «a €]0,1].
For any s € Z;, we define the distribution D,, , .(s) by:

(a,(a,s) +e), witha < U(Z;) and e <+ Dz aq-

» Decision LWE
With non-negligible probability on s < U(Zy): distinguish between the
distributions D,, 4. (s) and U(Z2+1).

We consider an oracle O which produces independant samples, all from the same
distribution being:

» either D,, ,(s) for a fixed s,

> either U(Z]™).
The goal is to decide which one with a non-negligeable advantage.

——— T



The Learning With Errors problem Y GREYC
LWE”

a,q

GivenmA’AH+ mH

n

> A Uz,
> s+ U(Zy),
» €< Dyzm o4, SMall compared to g.

aq

Discrete Gaussian error Dz, q

Search version: Given (A,b = As +e), find s.
Decision version: Distinguish from (A, b) with b uniform.

——— 3173



Equivalence between the two variants Y GREYC
LWE sample: (A, b = A s + e mod ¢) with short e.

» Easy reduction : from decision to search
» find s = distinguish b uniform or b LWE sample,

] 3973



Equivalence between the two variants Y GREYC
LWE sample: (A, b = A s + e mod ¢) with short e.
» Easy reduction : from decision to search

» find s = distinguish b uniform or b LWE sample,
» Given (A,b), find the oracle to find s, compute b — As:

] 39/73



Equivalence between the two variants Y GREYC
LWE sample: (A, b = A s + e mod ¢) with short e.

» Easy reduction : from decision to search
» find s = distinguish b uniform or b LWE sample,
» Given (A,b), find the oracle to find s, compute b — As:

» if it is small, then b is an LWE sample,
» if it looks uniform, then b is uniform.

——— 3973



Equivalence between the two variants
LWE sample: (A, b = A s + e mod ¢) with short e.

» Easy reduction : from decision to search
» find s = distinguish b uniform or b LWE sample,
> Given (A,b), find the oracle to find s, compute b — As:

» if it is small, then b is an LWE sample,
» if it looks uniform, then b is uniform.

» 2nd reduction: from search to decision
» Distinguish b uniform from b LWE sample =- find s,

——— 39173



Equivalence between the two variants gy GREYC
LWE sample: (A, b = A s + e mod ¢) with short e.

» Easy reduction : from decision to search
» find s = distinguish b uniform or b LWE sample,
> Given (A,b), find the oracle to find s, compute b — As:

» if it is small, then b is an LWE sample,
» if it looks uniform, then b is uniform.

» 2nd reduction: from search to decision
» Distinguish b uniform from b LWE sample =- find s,

»> Given (A, b) use the oracle to find each coordinate of s: for all s}, choose u
uniform in Z, and modify (A, b) as follow:

(8,5) + (u,0,...,0,us}) = (&, (@, 8) + e+ uls —s1))..

> if s7 = s1 it stays a LWE sample,
» else b will be uniform.

——— 39/73



Short Integer Solution problem [Ajtai 1996]

For A < U(Zg""):
SIS

LWE,

Y GREYC

A [=0modg

Goal: Given A <« U(Zg""),
find X s.t. 0 < || X | < 5.

A A

n

g

s < U(Zy), € < Dgm aq.

Goal: Given (A, A's + e),

find s.



Short Integer Solution problem [Ajtai 1996]

For A < U(Zy""):

Y GREYC

SIS; | LWE,
X - H
A =0modgq Al A +
n
s «+U(Zy), € < Dzm aq.
Solve SVP in Solve CVP in
AL(A)={Xez"|x"A =0modq} | AJ(A)={yeZ":y= A s modg

for some s € Z"}
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Hardness of LWE Y GREYC

» Exhaustive search

> Tryallthe s € Z; — is b — As small?
» = cost around ¢".

——— 4178



Hardness of LWE

» Exhaustive search
> Tryallthe s € Z; — is b — As small?
» = cost around ¢".
» Other possibility: guess the n first errors, find s — is b — As small?
» = cost around (agqy/n)".

——— #1173



Hardness of LWE Y GREYC

» Exhaustive search
> Tryallthe s € Z; — is b — As small?
» = cost around ¢".
» Other possibility: guess the n first errors, find s — is b — As small?
» = cost around (agqy/n)".

» How to do better?
» LWE is a lattice problem: consider

Aj(A)={yeZ™:y=Asmodgqfors e Z"}.

Solving LWE < solving CVP in this lattice.

nlogq

» Cost: (nlogq) log? o

log? a

——— 4178



Hardness of the Learning With Errors problem

Worst-case to average-

: Lattice
case reduction

e Regev 2005 - quantum

o Peikert 2009 - classical ¢ exp

o Brakerski, Langlois, Peikert
Regev, Stehlé 2013 - classical

— solve Approx GapSVP

Learning
With Errors

42/73



LWE variants

Choose another distribution for the secret or the error.
Regev 2009: uniform secret and gaussian error.

A |,

<
n

Same distribution as the error: in particular Gaussian,

Binary (Unif in {0,1}"),
Entropic.

Gaussian (continue,
discretize, discrete ...),

Uniform in small interval,

Binary under conditions.

43/73



Hardness of the Learning With Errors problem %Y GREYC

Worst-case to average-
case reduction

Lattice

o Regev 2005 - quantum

o Peikert 2009 - classical g exp

o Brakerski, Langlois, Peikert
Regev, Stehlé 2013 - classical

— solve Approx SVP

Learning
With Errors

Peikert 2010 - discrete Gaussian noise
Déttling, Miller-Quade 2013 - small uniform
Micciancio, Peikert 2013 - small uniform and binary noise
Bai, Lepoint, Roux-Langlois, Sakzad, Stehlé, Steinfeld 2015
Self reductions - small uniform, dimension preserving
Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
Goldwasser, Kalai, Peikert, Vaikuntanathan 2010 - binary secret

Brakerski, Langlois, Peikert, Regev, Stehlé 2013 - binary secret
Micciancio 2018 - binary secret

Brakerski, D6ttling 2020 - entropic secret

——— 44173



Using LWE to build provable constructions - theory ""\GREYC

Lattice
Worst-case to average-
case reduction

— solve Approx SVP

Learning
With Errors

Security proof

Cryptographic
constructions




Public key encryption

erneratke tv]::/o
Want to send eys pk, s
amessage M @ il

' and keep sk
¢ = Encrypt(pk, M) —> .

M = Decrypt(sk, C)

] 4673



Regev’s encryption scheme Y GREYC

» Parameters: n,m,q € Z, o € R,

> Keys: sk=s andpk=(A,b),with b =A s + e modg
where s < U(Zy), A < U(Z7*"), € < Dzm aq.

] 47/73



Regev’s encryption scheme

» Parameters: n,m,q € Z, a € R,

> Keys: sk=s andpk=(A, b),with b =
where s < U(Zy), A < U(Z7*"), € < Dzm aq.

» Encryption (M € {0,1}): Let|[r + U({0,1}™),

A s + e modg

I —

u’ =

A

+19/2]

Y GREYC

M

47173



hd Al J
Regev’s encryption scheme Y GREYC
» Parameters: n,m,q € Z, o € R,
> Keys: sk=s andpk=(A,b),with b = A s + e modg
where s < U(Zy), A < U(Z7*"), € <> Dzm aq.
» Encryption (M € {0,1}): Let [r + U({0,1}™),
I — r

u’ = A | v= +la/21- M1

» Decryption of (u,v): compute v — u”'s,
/) /e
H + le||+Har21 2

A

A H = small +|q/2]- M

v~

v uTs
If close from 0: return 0, if close from |¢/2]: return 1.

——— ro



hd Al J
Regev’s encryption scheme Y GREYC
» Parameters: n,m,q € Z, a € R,
> Keys: sk=s andpk=(A,b),with b = A s + e modg
where s < U(Zy), A < U(Z7*"), € < Dzm aq.
» Encryption (M € {0,1}): Let|[r + U({0,1}™),
r r

= A y U= +la/2]- M

u?

> Decryption of (u,v): compute v — u”’s,
I — /)

A

A |E| = small + |¢/2]-M

LWE hard = Regev’s scheme is IND-CPA secure.
]



Correction

The randomness r is uniformly chosen in {0, 1},
and e is sampled from a discrete gaussian of parameter

then, with overwhealming probability,

1> riei] < Il - llell < /om -

<m

4
5
v — uT's is either close from 0, either close from |¢/2], which allows to find M.

0

q 4w Wy
8 8 2 8 8
[ ] [
I 1 —
S r——
output 0 output 1 output 0
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IND-CPA security Y GREYC

To define the security, we use a game between a challenger and an adversary. We
define the following experiment:

Challenger Adversary
b— U{0,1})
Generate (pk, sk) pk
—
Mo, M, Choose My, M,
%

¢ <+ Enc(pk, My)
— Output v/
Awinsifb =t/

AdvCTA(A) = | Pr[A wins] — 1/2]

] 4973



IND-CPA security 3 GREYC

Goal of the proof: show that if an adversary succeed in attacking the encryption
scheme with a non-negligible advantage, then the challenger can use it to solve a difficult
problem (here LWE).

Decision LWE can also be seen as a game:

C B
A Uz ™)
RAND (b = 0): b < U(Z")
LWE(b=1):b=As+e 22,
output b’

Adl’(B) = PI‘[B M) 1] o PI’[B LWE 1} )

——— 50173



Leftover Hash Lemma Y GREYC

Let m,n,q > 1 be integers such that m > 4nlog ¢ and ¢ prime, and let
A — U(zp>")andr < U({0,1}™). Then (A, r"A) has statistical distance < 27"
from the uniform distribution on Z7**" x Z.

] 51/73



Leftover Hash Lemma Y GREYC

Let m,n,q > 1 be integers such that m > 4nlog ¢ and ¢ prime, and let
A — U(zp>")andr < U({0,1}™). Then (A, r"A) has statistical distance < 27"
from the uniform distribution on Z7**" x Z.

> Statistical distance : A(Dy, Ds) = 3 Y, |D1(z) — Da(2)].

——— 51178



Leftover Hash Lemma Y GREYC

Let m,n,q > 1 be integers such that m > 4nlog ¢ and ¢ prime, and let
A — U(zp>")andr < U({0,1}™). Then (A, r"A) has statistical distance < 27"
from the uniform distribution on Z7**" x Z.

> Statistical distance : A(Dy, Ds) = 3 Y, |D1(z) — Da(2)].

» For any algorithm A, we have
|P1“[A(D1) = 1] — PY[A(DQ) = 1]| S A(Dl,Dg).
A(D1, D7) small = Dy and D, are statistically indistinguishable.

——— 51178



Leftover Hash Lemma gy GREYC

Let m,n,q > 1 be integers such that m > 4nlog ¢ and ¢ prime, and let
A — U(zr>*™) and r <= U({0,1}™). Then (A, r" A) has statistical distance < 27"
from the uniform distribution on Z7**" x Z.

> Statistical distance : A(Dy, Ds) = 3 Y, |D1(z) — Da(2)].

» For any algorithm A, we have
|P1“[A(D1) = 1] — PY[A(DQ) = 1]| S A(Dl,Dz).
A(D1, D7) small = Dy and D, are statistically indistinguishable.

The LHL implies that ( (A b) , ¥ (A b) ) is indistinguishable from uniform.
L |

A |»b

——— 51173



IND-CPA security proof Y GREYC

Idea: we start from an LWE instance, and build an instance of the IND-CPA
experiment, then we use the answer of the adversary to solve LWE.
We use the following IND-CPA game:

5 A
(sk =s,pk = (A,b = As +e) < KeyGen(.) —>pk:(A’b)
chooses b o Chooses mg, m,

computes (u,v) < Enc(pk, mp) o), Computes a bit v/

if b =/ then output Win

We want to show that if LWE is hard, then there exists a negligible function negl
such that:
Pr[A Win] <1/2 + negl(n).

] 52/73



IND-CPA security proof

B wants to solve decisional LWE using .A.

C B A
RAND: b unif
LWE:b=As+e 22 BB g, ma,
choose b o
(rTAFTD + q/2 - my) o), Computes ¥/
if b = ' output 1 &

else output 0

For B:

» RAND: b is uniform then v is uniform. A cannot distinguish between the two cases,
its advantage is equals to zero, the probability that B outputs 1 is 1/2.

RAND
—

Pr[B 1] =1/2,

53/73



IND-CPA security proof

B wants to solve decisional LWE using .A.

C 5 )
RAND: b unif
LWE:b=As+e 22, B g,
ChOOSe b mo,m1
(u,v)

(¢(TAr"b+¢q/2-m;) —= Computes v/
if b = b output 1 &

else output 0

For B:
> LWE: b = As + e and then the ciphertext is exactly a ciphertext from the Regev
encryption scheme. The probability that 5 outputs 1 is exactly the success probability
of A in the encryption scheme security game (as it has the same view of the
experiment).

pr[B 25,

] 53/73

1] = Pr[A win],



IND-CPA security proof Y GREYC

To conclude, we have:

Pr(B 22D, 1) = 1/,
Pr(B 25, 1) = Pr[A win],
then:
Adv(B) = |Pr[B E2YE, 4] — o EYE q)
= |Pr[Awin] —1/2|

If A succeeds with a non-negligible probability, then there exists ¢ such that
Pr[Awin] > 1/2 + ¢, then Adv(B) > e which implies that there exists a
distinguisher able to solve the decisional LWE problem.

] 54/73



Using LWE Y GREYC

Hardness of SIS/LWE used as a foundation for many constructions.

Problem: constructions based on SIS/LWE
enjoy a nice guarantee of security
but are too costly in practice.

Learning
With Errors

ryptographic constructions

Signature, encryption
Advanced schemes
Fully Homomorphic Encryption

Security proof

Solutions used today?



Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured)
variants of LWE.

» Public Key Encryption
Crystals - Kyber: Module-LWE with both secret and noise chosen from a
centered binomial distribution.
Saber: Module-LWR (deterministic variant).
NTRU

FrodoKEM (as alternate candidate): LWE but with smaller parameters.
» Signature

Crystals - Dilithium: Module-LWE with both secret and noise chosen in a small
uniform interval, and Module-SIS.
Falcon: Ring-SIS on NTRU matrices.

——— 5673



Using SIS/LWE to build constructions

Lattice

Worst-case to average-

case reduction — solve Approx SVP

Learning
With Errors

| =
Security proof

Cryptographic
constructions

oY GREYC

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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Worst-case to average-
case reduction

Lattice

— solve Approx SVP

Learning
With Errors

.

.
.
.
.
.
.
-
-

Cryptanalysis

Choice of parameters
Security proof

-
-
-
J
g
U
g

l“‘
Cryptographic
constructions
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oY GREYC
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Using SIS/LWE to build constructions in practice

Lattice
Worst-case to average-

case reduction

— solve Approx SVP

*
ona
restricted

class “_
Learning using Cryptanalysis
With Errors Sf,r::f;l:tzd Choice of parameters
Security proof

Efficient
Cryptographic
constructions
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From SIS/LWE to structured variants

Problem: constructions based on LWE enjoy a nice guaranty of security
but are too costly in practice.

— replace Z" by a Ring, for example R = Z[z]/(z™ + 1) (n = 2F).

» Ring variants since 2006:

& Rot(ay)
- A -
» Structured A € Z;""*" represented by m - n elements, Rot(anm)
» Product with matrix/vector more efficient,
» Hardness of Ring-SIS, [Lyubashevsky and Micciancio 06]

and [Peikert and Rosen 06]
» Hardness of Ring-LWE [Lyubashevsky, Peikert and Regev 10].

——— 53173



Idea: replace Z" by R = Z[z]/{(z" + 1) XY GREYC

where n = 2F then the polynomial 2™ + 1 is irreducible.
Elements of this ring are polynomials of degree less than n.

R is isomorph to Z™

Leta € R, we have a(z) = ag + a1z + ... + ap_12" 1,
the isomorphism R — Z" associate
ap

ai
the polynomial a € R to the vectora = . ez".

an—1

——— 5973



Idea: replace Z" by R = Z[z]|/{z" + 1)

Let’s look at the product of two polynomials z™ + 1
» a(z)=ap+ar-z+...
> s(z)=so+a-x+...

Using matrices, it gives the following block:

Y GREYC
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Module LWE Y GREYC

Let K be a number field of degree n with R its ring of integers.
Think of K as Q[z]/(z™ + 1) and of R as Z[z]/(z" + 1) for n = 2.

Replace Z by R, and Z, by R, = R/qR.

=]
E
-7 S

A .| A + |e

a;; € Rq

Rot(alyl) S ngn W o
a

> A« U(R;nxd),
> s« U(RY), Spgcigll casLe\zA;iE: 1
> e € R™ small compared to q. IS Ring-

] 61/73



Module SIS and LWE Y GREYC

R =Z[z]/(z" 4+ 1) and R, = R/qR.

Let a > 0 and s € (R,)?, the distribution A;@RM is:
> ac (R,)? uniform,
» e sampled from Dpg o,

Outputs: (a, (a,s) +¢).

Module-LWE,, ,,
Let s € (R,)¢ uniform, distinguish between an arbitrary number of samples from

A7), or the same number from U((Ry)® x Ry).

] 62/73



Ideals and modules Y GREYC

R =7Z[z]/(z" +1) and R, = R/qR.
> Anideal I of R is an additive subgroup of R closed under multiplication by
every elements of R.

» As Risisomorph to Z", any ideal I € R defines an integer lattice A(B) where
B={gmoda"+1:9g¢cI}.

» Asubset M C K%is an R-module if it is closed under addition and
multiplication by elements of R.

> A finite-type R-module: M C R%: "2 R-b;, (b;) € RY,
> M= Zle I;-b; where I; are ideals of R and (I;,b;) is a pseudo-basis of M.
» As ideals, any module defines an integer module lattice.

——— 6373



Hardness of Ring Learning With Errors problem

hd Al J
G REYC
Worst-case to average-
case reduction
o Stehlé, Steinfeld, Tanaka and Xagawa 2009 - search

o Lyubashevsky, Peikert, Regev 2010 - decisional
reduction both quantum, ¢ poly

Ideal Lattice

— solve Ideal
Approx SVP

Ring Learning
With Errors

Self reductions

Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
]
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Hardness of Module Learning With Errors problem  §% GREYC

Worst-case to average-
case reduction

Module Lattice
o Langlois Stehlé 2015 - quantum, ¢ poly POE0E
e Folklore: adapting Peikert 2009 gives classical

reduction but ¢ exp and only search variant
e Boudgoust, Jeudy, Roux-Langlois, Wen 2021

classical, g poly, decisional, linear rank

> solve Module
Approx SVP

Module Learning
With Errors

Self reductions

Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
Boudgoust, Jeudy, Roux-Langlois, Wen 2022: short error and secret distributions



Module or Rings?

» Choice of parameters
» Example of Ring R, = Z[x]/(z™ + 1)
» Constraints on parameters n = 2*, ¢ = 1 mod 2n ...

» An example of parameter set:

> n =512 = 60 bits of security,
> n = 1024 = 140 bits of security,
> (n = 256,d = 3) gives nd = 768 which is "in between”.

» Module LWE allows more flexibility.



NIST competition Y GREYC

From 2017 to 2024, NIST competition to develop new standards
on post-quantum cryptography

2022 first results: 3 over 4 new standards are lattice-based

> Kyber - encryption scheme based on Module-LWE,
» Dilithium - signature scheme based on Module SIS and LWE,
» Falcon - signature scheme based on NTRU and Ring-SIS.

] 67/73



Encryption scheme based on Ring-LWE Y GREYC
[Lyubashevsky, Peikert, Regev 2011]

KeyGen : The secretkey isasmall s € R
The public key is (a,b) = (a,b=a- s+ ¢) € R2,
with a < U(R,) and a small ¢ € R.

Enc: Given m € {0,1}", a message is a polynomial in R with coordinates
in {0,1}. Sample small in R and output

(@-r4ei,b-r+e0+1q/2]-m) € Ry x Ry.
Dec : Given (u,v) € R4 x Ry, compute
v—u-s=( )+0blg/2]-m

For each coordinate of m, the plaintext is 0 if the result is closer from
0 than |¢/2], and 1 otherwise.

——— 68173



Kyber Y GREYC

[Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehle]

» Kyber relies on Module-LWE,
» Uses R, = Zy[z]/(x**% + 1) with ¢ = 7681.

» The small elements follow a binomial distribution B,:
For some positive integer 7, sample {(ai, bi)}]_; + ({0 1}2)" and output

>oimq (a; = bi).

» The uniform public key is generated given a seed and a function PARSE,

» Multiplication operations uses NTT - Number Theoretic Transform - which is a
variant of the FFT in rings,

» Size of ciphertext is compressed by keeping only high order bits.

——— 6978



Performances

Current timings (ECDH)
Public key around 32 bytes
Efficiency comparable in
terms of cycles.

Sizes (in bytes)
sk: 1632
pk: 800
ct: 768
Sizes (in bytes)
sk: 2400
pk: 184
ct: 1088
Sizes (in bytes)
sk: 3168
pk: 1568
ct: 1568

Y GREYC

Kyber-512
Haswell cycles (ref) Haswell cycles (avx2)
gen: 122684 gen: 33856
enc: 154524 enc: 45200
dec: 187960 dec: 34572
Kyber-768
Haswell cycles (ref) Haswell cycles (avx2)
gen: 199408 gen: 52732
enc: 235260 enc: 67624
dec: 274900 dec: 53156
Kyber-1024
Haswell cycles (ref) Haswell cycles (avx2)
gen: 307148 gen: 73544
enc: 346648 enc: 97324
dec: 396584 dec: 79128
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Choice of parameters Y GREYC

» Parameters used by Kyber:

> n =256 and d = 2, 3,4 giving three levels of security: 512, 768, 1024,
> ¢ ="7681
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Choice of parameters Y GREYC

» Parameters used by Kyber:

> n =256 and d = 2, 3,4 giving three levels of security: 512, 768, 1024,
> ¢ ="7681

» How do they choose the parameters?

» By considering the LWE instance with dimension nd,
» and the "lattice estimator” [Albrecht, Player, Scott 2015],
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Choice of parameters Y GREYC

» Parameters used by Kyber:

> n =256 and d = 2, 3,4 giving three levels of security: 512, 768, 1024,
> ¢ ="7681

» How do they choose the parameters?

» By considering the LWE instance with dimension nd,
» and the "lattice estimator” [Albrecht, Player, Scott 2015],

» There is no consideration of the structure!
» Why?
» Because we don’t know how...

] 71/73



Using LWE to build constructions in practice

oY GREYC
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Lattice
Worst-case to average-

case reduction

— solve Approx SVP

*
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class “_
Learning using Cryptanalysis
With Errors Sf,r::f;l:tzd Choice of parameters
Security proof

*
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Efficient
Cryptographic
constructions
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hd Al J
Conclusion 5 GREYC

» Lattice-based cryptography allows to build efficient constructions such as
encryption or signature schemes with a security based on the hardness of
difficult algorithmic problems on lattices.

» Three schemes (Kyber, Dilithium and Falcon) will be standardise by the NIST,
together with a hash-based signature.
Two of them are based on Module-LWE.

» Approx Ideal SVP seems to be the easier problem to try to solve — the results
of recent attacks does not impact the security of lattice-based constructions.

——— 73173
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