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Cryptography

Let’s start with a simple example: you want to send a message to someone.
Two possibilities:
I Either you share a secret key (AES...),
I Either you don’t⇒ public key cryptography.
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Public key cryptography

Want to send
a message M

c = Encrypt(pk,M)
C

Generate two
keys pk, sk

pk

and keep sk

M = Decrypt(sk, C)

Adversary

⇔ solve a difficult algorithmic problem

I Examples: factorisation (RSA), discrete log (El Gamal) ...

I What does it mean to be difficult? Solving those problems needs an exponential
complexity on a classical computer.
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Public key encryption

Want to send
a message M

c = Encrypt(pk,M)
C

Generate two
keys pk, sk

pk

and keep sk

M = Decrypt(sk, C)

Definition
A public key encryption scheme is defined by three algorithms (KeyGen, Enc,
Dec) such that:
I KeyGen takes as input the security parameter λ and outputs the keys (pk, sk),
I Enc takes as input pk and a message m and outputs c = Enc(pk,m),
I Dec takes as input sk and a cipher c and outputs m = Dec(sk, c),

such that Dec(sk, (Enc(pk,m)) = m.
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Public key encryption

Definition
A public key encryption scheme is defined by three algorithms (KeyGen, Enc,
Dec) such that:
I KeyGen takes as input the security parameter λ and outputs the keys (pk, sk),
I Enc takes as input the public key pk and a message m and outputs
c = Enc(pk,m),

I Dec takes as input the secret key sk and a cipher c and outputs
m = Dec(sk, c),

such that Dec(sk, (Enc(pk,m)) = m.

Two important properties: correctness and security.
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Public key encryption

How do we define security of a public key encryption?

We use the notion of indistinguishability of the ciphertexts.
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IND-CPA security
To define the security, we use a game between a challenger and an adversary.
We define the following experiment:

Challenger Adversary

b← U({0, 1})
Generate (pk, sk) pk

−→
M0,M1 Choose M0,M1
←−

c← Enc(pk,Mb)

−→ Output b′
A wins if b = b′

AdvCPA(A) = |Pr[A wins]− 1/2|
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Today: an introduction to (lattice-based) cryptography

1. El Gamal encryption scheme
I Background
I Discrete logarithm problem
I El Gamal scheme and its security

2. Regev’s encryption scheme
I Lattices and hard problem on lattices
I Learning With Errors problem
I How to encrypt using LWE?
I Practical scheme using Module-LWE

8 / 73



Security hypothesis

To build a public key encryption scheme, we need:
I a “difficult to inverse” problem: allows to build a public key using a secret key

but not to come back,
I a efficient key generation.

Example of RSA encryption scheme:
I the secret key is (p, q) two distinct primes
⇒ we have to be able to generate large prime efficiently

I the public key is N = pq
⇒ the “factorization” problem must be difficult to solve.
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Difficult problem vs efficient algorihtm

Computational security: different from a perfect security,
schemes can be attacked

but it must be difficult (too slow in practice).

Let n be the security parameter:
I Efficient algorithm = polynomial in n (nc for constant c),
I Difficult problem = no algorithm in polynomial time, best know algorithm has

complexity exponential in n.

Order of magnitude:
I Today, a difficult problem⇒ complexity 280 or 2128

I A 3.4GHz processor executes 3.4× 109 cycles per second
I 260 cycles requires 340× 106 secondes (around 11 years),
I 280 is 220 (around 1 million) times 260 ...
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Background

ZN = {0, 1, 2, . . . , N − 1}

I Operations of addition, substraction and multiplication,
I (ZN ,+,×) is a ring.

I Inverse: if a is prime with N , the multiplicative inverse of a mod N is b such
that ab = 1 mod N .
→ To find the inverse, use Extended Euclidean algorithm.
→ Allows to find (u, v) such that au+Nv = 1 mod N .

I Particular case: p prime→ Zp = {1, 2, . . . , p− 1} has only inversible elements,
→ (Zp,+,×) is a field.
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Background

Z∗N = {a ∈ {1, . . . , N − 1}| gcd(a,N) = 1},
it is the set of integers of ZN invertible modulo N .

I Euler’s totient function: ϕ(N) = Card(Z∗N )
I If N prime: ϕ(N) = N − 1,
I If N =

∏
i p
ei
i with pi prime and ei > 1, then ϕ(N) =

∏
i p
ei−1
i (pi − 1).

Euler’s Theorem
For N > 1 and x ∈ Z∗N , we have that xϕ(N) = 1 mod N .

Consequence for x ∈ Z∗N : xa mod N = xa mod ϕ(N) mod N .
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Discrete logarithm problem

I If p is prime then Z∗p is a cyclic group of order p− 1.
It means it has ϕ(p− 1) generators g such that Z∗p = (1, g, g2, · · · , gp−2).

Discrete Logarithm Problem (DLP):
Let G be a finite group (Z∗p as example), q its order, g a generator, and ga where a
is uniformly sampled in Zq, find a.

This problem can be difficult to solve or easy, it depends on the group!

I Historical choice: Z∗p with p prime,
I Bad choice possible,
I Good choice: quadratic residues subgroup of Z∗p,
I Today: elliptic curves.
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DLP and its variants

Discrete Logarithm Problem (DLP):
Let G be a finite group, q its order, g a generator, and ga where a is uniformly
sampled in Zq, find a.

Computational Diffie-Hellman problem (CDH):
Let G be a finite group, q its order, g a generator, and ga, gb where a and b are
uniformly sampled in Zq, compute gab.

Decisional Diffie-Hellman problem (DDH):
Given g a generator, distinguish between the distribution (ga, gb, gab) and(ga, gb, gc)
where a, b and c are uniformly sampled in Zq.

DLP is the hardest to solve,
There exists groups where DDH is easy to solve but CDH difficult.
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DDH experiment
Given an algorithm G which generates a group G:

C B
(G, q, g)← G(1n)
x, y ← U(Zq)

RAND (b = 0): z ← U(Zq)
DDH (b = 1): z = xy

(g,gx,gy,gz)−−−−−−−−→
output b′

Adv(B) =
∣∣∣Pr[B RAND−−−−−→ 1]− Pr[B DDH−−−−→ 1]

∣∣∣.
Definition
The DDH problem is difficult to solve for a group G if for all Probabilistic Polynomial Time
(PPT) algorithm B, there exists a negligible function negl(n) such that:

Adv(B) ≤ negl(n).

Probabilities are taken over the experiment in which G(1n) outputs (G, q, g) then uniform x, y, z ∈ Zq
are chosen.
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Best known algorithm

I Exhaustive search: the security parameter n is the number of bits of q (the
order of the group) i.e. log q = n.
Brute-force search: exponential in n.

I Best known algorithm: the general number field sieve (NFS).
Complexity in exp(O(n)1/3(log n)2/3)
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ElGamal encryption

I Key generation: generate (G, q, g) (publics),
then sample an uniform x, and compute h = gx,
Secret key: sk = x, Public key: pk = gx.

I Enc: given pk = gx and a message m ∈ G,
choose y uniform and output (gy, hy ·m).

I Dec: given sk = x and (c1, c2), output m = c2/c
x
1 .

Correctness: c2
cx1

= hy ·m
gxy = gxy ·m

gxy = m.

Security
If the DDH problem is difficult to solve, then the ElGamal encryption scheme is
IND-CPA secure.
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Principe d’une preuve de sécurité

Security proof: show that if an adversary can succeed in attacking the scheme with
a non negligible advantage, then it is possible to solve a difficult problem (DDH).

⇒ it’s a reduction between two problems
Reduction from problem A to problem B

DDH successfull CPA attack

show that if I know how to solve B then I know how to solve A:
⇒ if A is difficult to solve, then so is B.

We start with an instance A (instance of DDH : (g, gx, gy, gz)) and an oracle for B (which is
the hypothesis that an adversary can successfully attack).
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Security proof

Idea: given the instance of DDH, we build one from the IND-CPA experiment and
we use the answer of the adversary to solve DDH.

We recall the DDH experiment:

C B
(G, q, g)← G(1n)
x, y ← U(Zq)

RAND (b = 0): z ← U(Zq)
DDH (b = 1): z = xy

(g,gx,gy,gz)−−−−−−−−→
output b′

Adv(B) =
∣∣∣Pr[B RAND−−−−−→ 1]− Pr[B DDH−−−−→ 1]

∣∣∣.

19 / 73



Security proof
Idea: given the instance of DDH, we build one from the IND-CPA experiment and
we use the answer of the adversary to solve DDH.

We then recall the IND-CPA security game:

B A
(sk = x, pk = gx)← KeyGen(.)

pk=gx−−−−→
choose b

m0,m1←−−−− Chooses m0,m1,
computes (c1, c2)← Enc(pk,mb)

c1,c2−−−→ Computes a bit b′

if b = b′ then output Win

We want to show that if DDH is difficult to solve, then there exists a negligible
function negl such that que:

Pr[AWin] ≤ 1/2 + negl(n).
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Security proof
We have an algorithm B which wants to solve DDH using A.

C B A
RAND: z unif

DDH: z = xy
(g,gx,gy ,gz)−−−−−−−→ (g,gx)−−−→ m0,m1,

choose b
m0,m1←−−−−

(gy, gz ·mb)
c1,c2−−−→ Computes b′

if b = b′ output 1
b′←−

else output 0

View of B:
I If RAND: z is uniformly distributed so c2 too. A cannot distinguish between two

ciphertexts: its advantage is zero, the probability that B outputs 1 is then 1/2.

Pr[B RAND−−−−−→ 1] = 1/2,
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Security proof
We have an algorithm B which wants to solve DDH using A.

C B A
RAND: z unif

DDH: z = xy
(g,gx,gy ,gz)−−−−−−−→ (g,gx)−−−→ m0,m1,

choose b
m0,m1←−−−−

(gy, gz ·mb)
c1,c2−−−→ Computes b′

if b = b′ output 1
b′←−

else output 0

View of B:
I If DDH: z = xy and the ciphertext is exactly an ElGamal ciphertext. The probability

that B outputs 1 is exactly the success probability of A dans le in the IND-CPA
security game (as it has the same view).

Pr[B DDH−−−−→ 1] = Pr[A win],
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Security proof

To conclude, we have:
Pr[B RAND−−−−→ 1] = 1/2,

Pr[B DDH−−−→ 1] = Pr[A win],
donc :

Adv(B) = |Pr[B RAND−−−−→ 1]− Pr[B DDH−−−→ 1]|
= |Pr[A win]− 1/2|

Finally:
I As DDH is a difficult problem, we know there exists a negligible function negl

such that Adv(B) ≤ negl then Pr[A win] ≤ 1/2 + negl.
I We suppose that A successfully attack, then there exists a non negligible ε such that

Pr[A win] ≥ 1/2 + ε, then Adv(B) ≥ ε which implies there exists a distinguisher for
the DDH problem.
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Today: an introduction to (lattice-based) cryptography

1. El Gamal encryption scheme
I Background
I Discrete logarithm problem
I El Gamal scheme and its security

2. Regev’s encryption scheme
I Lattices and hard problem on lattices
I Learning With Errors problem
I How to encrypt using LWE?
I Practical scheme using Module-LWE
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Post-quantum cryptography
Let’s go back to the example: you want to send a message to someone.

Two possibilities:
I Either you share a secret key,
I Either you don’t
⇒ public key cryptography (RSA...).

To send
a message M

C = Encrypt(pk,M)
C

two keys pk, sk
pk

keep sk

M = Decrypt(sk, C)

AdversarySolve a difficult algorithmic problem⇔
Examples: factorisation, discrete log

I Solving those problems needs an exponential complexity on a classical computer.
I Shor’s algorithm (1995): polynomial time on a quantum computer.
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Context

→ need alternatives
I Post-quantum secure,
I Efficient,
I New functionalities, different types of constructions.

NIST competition Code-based cryptography

Lattice-based cryptography

Multivariate, Isogenies, Hash based ...
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NIST competition
From 2017 to 2024, NIST competition to develop new standards

on post-quantum cryptography

Total: 69 accepted submissions (round 1)
I Signature (5 lattice-based),
I Public key encryption / Key Encapsulation

Mechanism (21 lattice-based)

Other candidates: 17 code-based PKE, 7 multivariate signatures, 3 hash-based
signatures, 7 from ”other” assumptions (isogenies, PQ RSA ...) and 4 attacked + 5
withdrawn.

⇒ lattice-based constructions are very serious candidates
5 over 7 finalists are lattice-based

2022 first results: 3 over 4 new standards are lattice-based
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Why lattice-based cryptography?

I Likely to resist attacks from quantum computers,
I Strong security guarantees,

from well-understood hard problems on lattices.

I Novel and powerful cryptographic functionalities,
I Public key encryption and signature scheme (practical),
I Advanced signature (group signature ...),

and encryption scheme (IBE, ABE, ...),
I Fully homomorphic encryption.

I Efficiency
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Lattices
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b2
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Lattice
L(B) = {

∑n
1=i aibi, ai ∈ Z}, where the (bi)1≤i≤n’s, linearly independent vectors,

are a basis of L(B).
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I Several basis define a lattice, some are better.

I The first minimum λ1 is the norm of the smallest non-zero vector.
I The n-th minima λn is the radius of a sphere which contains n linearly

independent shortest vectors of the lattices.
I The fundamental parallelepiped is defined by P(B) = {

∑n
i=1 cibi : ci ∈ [0, 1)}.

Its volume defines the volume of the lattice: det(Λ) = |det(B)|.

I Minkowski Theorem:
λ1(Λ) ≤

√
n · det(Λ)1/n,(

n∏
i=1

λi(Λ)

)1/n

≤
√
n · det(Λ)1/n.
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Shortest Vector Problem (SVP)

Given a lattice L(B) of dimension n:

Output: find the shortest non-zero vector x ∈ L(B).
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Approx Shortest Vector Problem (Approx SVPγ)

Given a lattice L(B) of dimension n:

Output: find a non-zero vector x ∈ L(B) such that ‖x‖ ≤ γλ1(L(B))
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Gap Shortest Vector Problem (GapSVP)

Given a lattice L(B) of dimension n and d > 0:

Output: • YES: there is z ∈ L(B) non-zero such that ‖z‖ < d,
• NO: for all non-zero vectors z ∈ L(B): ‖z‖ ≥ d.

• • • • • • •

• • • • • • •

• • • • • • •

d

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • •
d
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Gap Shortest Vector Problem (GapSVPγ)

Given a lattice L(B) of dimension n and d > 0:

Output: • YES: there is z ∈ L(B) non-zero such that ‖z‖ < d,
• NO: for all non-zero vectors z ∈ L(B): ‖z‖ ≥ γd.

• • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • •
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•
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•

•

•

•

•

• • • • • •
d
γd
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Closest Vector Problem

Given a lattice L(B) of dimension n and t ∈ Zm:

Output: find x ∈ Zn minimizing ||Bx− t||.
Approx variant: find x ∈ Zn such that ||Bx− t|| ≤ γ · dist(t,Λ(B)).
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t•

How hard is it to solve those problems?
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Hardness of Approx SVPγ

γ
1

√
n poly(n) 2O(n)

cost
to solve 2Ω(n) 2Ω(n) poly(n)

hardness
Complexity NP-hard

NP ∩ CoNP

PCrypto

Conjecture
There is no polynomial time algorithm that approximates this lattice problem and
its variants to within polynomial factors.
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At the heart of lattice-based cryptography
the Learning With Errors problem

I Introduced by Regev in 2005

Problem: solve a linear system with m equations and n variables (m ≥ n), with
noise, and modulo an integer q.

Find (s1, s2, s3, s4, s5) such that:

s1 + 22s2 + 17s3 + 2s4 + s5 ≈ 16 mod 23

3s1 + 2s2 + 11s3 + 7s4 + 8s5 ≈ 17 mod 23

15s1 + 13s2 + 10s3 + 3s4 + 5s5 ≈ 3 mod 23

17s1 + 11s2 + 20s3 + 9s4 + 3s5 ≈ 8 mod 23

2s1 + 14s2 + 13s3 + 6s4 + 7s5 ≈ 9 mod 23

4s1 + 21s2 + 9s3 + 5s4 + s5 ≈ 18 mod 23

11s1 + 12s2 + 5s3 + s4 + 9s5 ≈ 7 mod 23
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Gaussian distributions

Continuous Gaussian distribution of center c and parameter s:∣∣∣∣∣ Ds,c(x) ∼ 1
s exp

(
− π ||x−c||

2

s2

)
∀x ∈ R

Gaussian distribution on Z of center c with parameter s:∣∣∣∣∣ DZ,s,c(x) ∼ 1
s exp

(
− π ||x−c||

2

s2

)
∀x ∈ Z

I It is not the rounding of the continuous Gaussian.
I We now how to sample it efficiently.
I Almost all samples are in [−t · s,+t · s] for a constant t, if s is not to small.
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Discrete gaussian on lattices

Theorem (Gentry, Peikert, Vaikuntanathan 2008)

There exists a PPT algorithm which, given a basis B of a lattice Λ(B) of
dimension n, a parameter s ≥ ‖B̃‖ · ω(

√
log n), an a center c ∈ Rn, outputs a

sample from a distribution statistically close from DΛ,s,c.

Intuition: sampling on Z is quite easy, it is more complicated on a general lattice.

Important: Better is the basis (with short vectors), smaller is the parameter we
can sample with, and then have short vectors.
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The Learning With Errors problem [Regev 05]

Let n > 1, q ≥ 2 and α ∈]0, 1[.
For any s ∈ Znq , we define the distribution Dn,q,α(s) by:

(a, 〈a,s〉+ e) , with a← U(Znq ) and e← DZ,αq.

I Search LWE
For any s: find s given an arbitrary number of samples from Dn,q,α(s).

I Decision LWE
With non-negligible probability on s← U(Znq ): distinguish between the
distributions Dn,q,α(s) and U(Zn+1

q ).
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Decision version

Let n > 1, q ≥ 2 and α ∈]0, 1[.
For any s ∈ Znq , we define the distribution Dn,q,α(s) by:

(a, 〈a,s〉+ e) , with a← U(Znq ) and e← DZ,αq.

I Decision LWE
With non-negligible probability on s← U(Znq ): distinguish between the
distributions Dn,q,α(s) and U(Zn+1

q ).

We consider an oracle O which produces independant samples, all from the same
distribution being:
I either Dn,q,α(s) for a fixed s,
I either U(Zn+1

q ).
The goal is to decide which one with a non-negligeable advantage.
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The Learning With Errors problem

LWEn
α,q

,
find s

Given A A
s

+ e

m

n

I A← U(Zm×nq ),
I s← U(Znq ),
I e← DZm,αq, small compared to q.

αq

Discrete Gaussian error DZ,αq

Search version: Given (A,b = As + e), find s.
Decision version: Distinguish from (A,b) with b uniform.
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Equivalence between the two variants
LWE sample: ( A , b = A s + e mod q) with short e .

I Easy reduction : from decision to search
I find s⇒ distinguish b uniform or b LWE sample,

I Given (A,b), find the oracle to find s, compute b− As:

I if it is small, then b is an LWE sample,
I if it looks uniform, then b is uniform.

I 2nd reduction: from search to decision
I Distinguish b uniform from b LWE sample⇒ find s,

I Given (A,b) use the oracle to find each coordinate of s: for all s∗1, choose u
uniform in Zq and modify (A,b) as follow:

(a, b) + (u, 0, . . . , 0, us∗1) = (a′, 〈a′,s〉+ e+ u(s∗1 − s1)), .

I if s∗1 = s1 it stays a LWE sample,
I else b will be uniform.
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Short Integer Solution problem [Ajtai 1996]

For A ← U(Zm×nq ):

SISβ LWEα

x

A = 0 mod q ,A A
s

+ e
m

n

s ← U(Znq ), e ← DZm,αq.

Goal: Given A ← U(Zm×nq ), Goal: Given ( A , A s + e ),
find x s.t. 0 < ‖ x ‖ ≤ β. find s .
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Short Integer Solution problem [Ajtai 1996]

For A ← U(Zm×nq ):

SISβ LWEα

x

A = 0 mod q ,A A
s

+ e
m

n

s ← U(Znq ), e ← DZm,αq.

Solve SVP in Solve CVP in
Λ⊥q ( A ) = { x ∈ Zm| x T A = 0 mod q} Λq( A ) = {y ∈ Zm : y = A s mod q

for some s ∈ Zn}
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Hardness of LWE

I Exhaustive search
I Try all the s ∈ Znq → is b− As small?
I ⇒ cost around qn.

I Other possibility: guess the n first errors, find s→ is b− As small?
I ⇒ cost around (αq

√
n)n.

I How to do better?
I LWE is a lattice problem: consider

Λq(A) = {y ∈ Zm : y = As mod q for s ∈ Zn}.

Solving LWE⇔ solving CVP in this lattice.

I Cost:
(
n log q
log2 α

)n log q

log2 α .
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Hardness of the Learning With Errors problem

Learning
With Errors

Lattice

→ solve Approx GapSVP

•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Worst-case to average-
case reduction

• Regev 2005 - quantum
• Peikert 2009 - classical q exp
• Brakerski, Langlois, Peikert

Regev, Stehlé 2013 - classical
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LWE variants

Choose another distribution for the secret or the error.
Regev 2009: uniform secret and gaussian error.

,A A
s

+ e

m

n

I Gaussian (continue,
discretize, discrete ...),

I Uniform in small interval,
I Binary under conditions.

I Same distribution as the error: in particular Gaussian,
I Binary (Unif in {0, 1}n),
I Entropic.
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Hardness of the Learning With Errors problem

Learning
With Errors

Lattice

→ solve Approx SVP

•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Worst-case to average-
case reduction

• Regev 2005 - quantum
• Peikert 2009 - classical q exp
• Brakerski, Langlois, Peikert

Regev, Stehlé 2013 - classical

Self reductions

• Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
• Goldwasser, Kalai, Peikert, Vaikuntanathan 2010 - binary secret
• Brakerski, Langlois, Peikert, Regev, Stehlé 2013 - binary secret
• Micciancio 2018 - binary secret
• Brakerski, Döttling 2020 - entropic secret

• Peikert 2010 - discrete Gaussian noise
• Döttling, Müller-Quade 2013 - small uniform

• Micciancio, Peikert 2013 - small uniform and binary noise
• Bai, Lepoint, Roux-Langlois, Sakzad, Stehlé, Steinfeld 2015

- small uniform, dimension preserving
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Using LWE to build provable constructions - theory

Learning
With Errors

Lattice

→ solve Approx SVP
•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof
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Public key encryption

Want to send
a message M

c = Encrypt(pk,M)
C

Generate two
keys pk, sk

pk

and keep sk

M = Decrypt(sk, C)
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Regev’s encryption scheme

I Parameters: n,m, q ∈ Z, α ∈ R,

I Keys: sk = s and pk = ( A , b ), with b = A s + e mod q

where s ←↩ U(Znq ), A ←↩ U(Zm×nq ), e ←↩ DZm,αq.

I Decryption of (u, v): compute v − uTs,
r

A
s

+ e +bq/2e .M−

r

A
s

= small + bq/2e .M

LWE hard ⇒ Regev’s scheme is IND-CPA secure.
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r

A
r

b +bq/2e .M

I Decryption of (u, v): compute v − uTs,
r

A
s

+ e +bq/2e .M−

r

A
s

= small + bq/2e .M

︸ ︷︷ ︸
v

︸ ︷︷ ︸
uT s

If close from 0: return 0, if close from bq/2c: return 1.

LWE hard ⇒ Regev’s scheme is IND-CPA secure.
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Correction

The randomness r is uniformly chosen in {0, 1}m,
and e is sampled from a discrete gaussian of parameter αq ≤ q/(8m),
then, with overwhealming probability,∣∣∑

i≤m
riei
∣∣ ≤ ‖r‖ · ‖e‖ ≤ √m · q

8
√
m

=
q

8
.

v − uTs is either close from 0, either close from bq/2c, which allows to find M .

output 0 output 0output 1

0
q
2

qq
8

3q
8

5q
8

7q
8
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IND-CPA security
To define the security, we use a game between a challenger and an adversary. We
define the following experiment:

Challenger Adversary

b→ U({0, 1})
Generate (pk, sk) pk

−→
M0,M1 Choose M0,M1
←−

c← Enc(pk,Mb)

−→ Output b′
A wins if b = b′

AdvCPA(A) = |Pr[A wins]− 1/2|
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IND-CPA security

Goal of the proof: show that if an adversary succeed in attacking the encryption
scheme with a non-negligible advantage, then the challenger can use it to solve a difficult

problem (here LWE).

Decision LWE can also be seen as a game:

C B
A←− U(Zm×nq )

RAND (b = 0): b← U(Zmq )

LWE (b = 1): b = As + e
(A,b)−−−→

output b′

Adv(B) =
∣∣∣Pr[B RAND−−−−−→ 1]− Pr[B LWE−−−−→ 1]

∣∣∣.
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Leftover Hash Lemma
Let m,n, q ≥ 1 be integers such that m ≥ 4n log q and q prime, and let
A←↩ U(Zm×nq ) and r←↩ U({0, 1}m). Then (A, rTA) has statistical distance ≤ 2−n

from the uniform distribution on Zm×nq × Znq .

I Statistical distance : ∆(D1, D2) = 1
2

∑
x |D1(x)−D2(x)|.

I For any algorithm A, we have
|Pr[A(D1) = 1]− Pr[A(D2) = 1]| ≤ ∆(D1, D2).
∆(D1, D2) small⇒ D1 and D2 are statistically indistinguishable.

The LHL implies that ( (A b) , r (A b) ) is indistinguishable from uniform.

r

A b
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IND-CPA security proof

Idea: we start from an LWE instance, and build an instance of the IND-CPA
experiment, then we use the answer of the adversary to solve LWE.
We use the following IND-CPA game:

B A

(sk = s, pk = (A,b = As + e)← KeyGen(.)
pk=(A,b)−−−−−−→

chooses b
m0,m1←−−−− Chooses m0,m1,

computes (u, v)← Enc(pk,mb)
(u,v)−−−→ Computes a bit b′

if b = b′ then output Win

We want to show that if LWE is hard, then there exists a negligible function negl
such that:

Pr[AWin] ≤ 1/2 + negl(n).
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IND-CPA security proof
B wants to solve decisional LWE using A.

C B A
RAND: b unif

LWE: b = As + e
(A,b)−−−→ (A,b)−−−→ m0,m1,

choose b
m0,m1←−−−−

(rTA, rTb + q/2 ·mb)
(u,v)−−−→ Computes b′

if b = b′ output 1
b′←−

else output 0

For B:
I RAND: b is uniform then v is uniform. A cannot distinguish between the two cases,

its advantage is equals to zero, the probability that B outputs 1 is 1/2.

Pr[B RAND−−−−−→ 1] = 1/2,
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B wants to solve decisional LWE using A.

C B A
RAND: b unif

LWE: b = As + e
(A,b)−−−→ (A,b)−−−→ m0,m1,

choose b
m0,m1←−−−−

(rTA, rTb + q/2 ·mb)
(u,v)−−−→ Computes b′

if b = b′ output 1
b′←−

else output 0

For B:
I LWE: b = As + e and then the ciphertext is exactly a ciphertext from the Regev

encryption scheme. The probability that B outputs 1 is exactly the success probability
of A in the encryption scheme security game (as it has the same view of the
experiment).

Pr[B LWE−−−−→ 1] = Pr[A win],
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IND-CPA security proof

To conclude, we have:

Pr[B RAND−−−−→ 1] = 1/2,

Pr[B LWE−−−→ 1] = Pr[A win],

then:

Adv(B) = |Pr[B RAND−−−−→ 1]− Pr[B LWE−−−→ 1]|
= |Pr[A win]− 1/2|

If A succeeds with a non-negligible probability, then there exists ε such that
Pr[A win] ≥ 1/2 + ε, then Adv(B) ≥ ε which implies that there exists a
distinguisher able to solve the decisional LWE problem.
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Using LWE

Hardness of SIS/LWE used as a foundation for many constructions.

Learning
With Errors

Cryptographic constructions
Signature, encryption
Advanced schemes

Fully Homomorphic Encryption

Security proof

Problem: constructions based on SIS/LWE
enjoy a nice guarantee of security

but are too costly in practice.

Solutions used today?
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Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured)
variants of LWE.

I Public Key Encryption
I Crystals - Kyber: Module-LWE with both secret and noise chosen from a

centered binomial distribution.
I Saber: Module-LWR (deterministic variant).
I NTRU
I FrodoKEM (as alternate candidate): LWE but with smaller parameters.

I Signature
I Crystals - Dilithium: Module-LWE with both secret and noise chosen in a small

uniform interval, and Module-SIS.
I Falcon: Ring-SIS on NTRU matrices.
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Using SIS/LWE to build constructions

Learning
With Errors

Lattice
→ solve Approx SVP

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof
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Using SIS/LWE to build constructions in practice

Learning
With Errors

Lattice
→ solve Approx SVP

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof

Cryptanalysis
Choice of parameters
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Using SIS/LWE to build constructions in practice

using
structured
variants

Learning
With Errors

Lattice
→ solve Approx SVP

on a
restricted

class

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof
Efficient

Cryptanalysis
Choice of parameters
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From SIS/LWE to structured variants
Problem: constructions based on LWE enjoy a nice guaranty of security
but are too costly in practice.

→ replace Zn by a Ring, for example R = Z[x]/〈xn + 1〉 (n = 2k).

I Ring variants since 2006:

A

Rot(a1)

Rot(am)I Structured A ∈ Zm·n×nq represented by m · n elements,
I Product with matrix/vector more efficient,
I Hardness of Ring-SIS, [Lyubashevsky and Micciancio 06]

and [Peikert and Rosen 06]

I Hardness of Ring-LWE [Lyubashevsky, Peikert and Regev 10].
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Idea: replace Zn by R = Z[x]/〈xn + 1〉

where n = 2k then the polynomial xn + 1 is irreducible.
Elements of this ring are polynomials of degree less than n.

R is isomorph to Zn

Let a ∈ R, we have a(x) = a0 + a1x+ . . .+ an−1x
n−1,

the isomorphism R→ Zn associate

the polynomial a ∈ R to the vector a =


a0

a1
...

an−1

 ∈ Zn.
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Idea: replace Zn by R = Z[x]/〈xn + 1〉

Let’s look at the product of two polynomials xn + 1

I a(x) = a0 + a1 . x+ . . .+ an−1 . x
n−1

I s(x) = s0 + a1 . x+ . . .+ an−1 . x
n−1

Using matrices, it gives the following block:
a0 −an−1 · · · −a2 −a1

a1 a0 · · · −a3 −a2
...

...
. . .

...
...

an−2 an−3 · · · a0 −an−1

an−1 an−2 · · · a1 a0




s0

s1
...

sn−2

sn−1


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Module LWE
Let K be a number field of degree n with R its ring of integers.
Think of K as Q[x]/(xn + 1) and of R as Z[x]/(xn + 1) for n = 2k.

Replace Z by R, and Zq by Rq = R/qR.

,A A
s

s1

+ e

e1

m

rank d

a1,1

a1,1 ∈ Rq
Rot(a1,1) ∈ Zn×nq

I A← U(Rm×dq ),
I s← U(Rdq),
I e ∈ Rm small compared to q.

Special case d = 1
is Ring-LWE
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Module SIS and LWE

R = Z[x]/〈xn + 1〉 and Rq = R/qR.

Let α > 0 and s ∈ (Rq)
d, the distribution A(M)

s,DR,αq is:

I a ∈ (Rq)
d uniform,

I e sampled from DR,αq,
Outputs: (a, 〈a,s〉+ e) .

Module-LWEq,να
Let s ∈ (Rq)

d uniform, distinguish between an arbitrary number of samples from
A

(M)
s,DR,αq or the same number from U((Rq)

d ×Rq).
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Ideals and modules

R = Z[x]/〈xn + 1〉 and Rq = R/qR.
I An ideal I of R is an additive subgroup of R closed under multiplication by

every elements of R.
I As R is isomorph to Zn, any ideal I ∈ R defines an integer lattice Λ(B) where

B = {g mod xn + 1 : g ∈ I}.

I A subset M ⊆ Kd is an R-module if it is closed under addition and
multiplication by elements of R.

I A finite-type R-module: M ⊆ Rd :
∑D

i=1R .bi, (bi) ∈ Rd,
I M =

∑d
i=1 Ii .bi where Ii are ideals of R and (Ii,bi) is a pseudo-basis of M .

I As ideals, any module defines an integer module lattice.
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Hardness of Ring Learning With Errors problem

Ring Learning
With Errors

Ideal Lattice

→ solve Ideal
Approx SVP

•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Worst-case to average-
case reduction

• Stehlé, Steinfeld, Tanaka and Xagawa 2009 - search
• Lyubashevsky, Peikert, Regev 2010 - decisional

reduction both quantum, q poly

Self reductions

• Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
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Hardness of Module Learning With Errors problem

Module Learning
With Errors

Module Lattice

→ solve Module
Approx SVP

•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Worst-case to average-
case reduction

• Langlois Stehlé 2015 - quantum, q poly
• Folklore: adapting Peikert 2009 gives classical

reduction but q exp and only search variant
• Boudgoust, Jeudy, Roux-Langlois, Wen 2021

classical, q poly, decisional, linear rank

Self reductions

• Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
• Boudgoust, Jeudy, Roux-Langlois, Wen 2022: short error and secret distributions

65 / 73



Module or Rings?

I Choice of parameters
I Example of Ring Rq = Zq[x]/〈xn + 1〉
I Constraints on parameters n = 2k, q = 1 mod 2n ...

I An example of parameter set:
I n = 512⇒ 60 bits of security,
I n = 1024⇒ 140 bits of security,
I (n = 256, d = 3) gives nd = 768 which is ”in between”.

I Module LWE allows more flexibility.
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NIST competition

From 2017 to 2024, NIST competition to develop new standards
on post-quantum cryptography

2022 first results: 3 over 4 new standards are lattice-based

I Kyber - encryption scheme based on Module-LWE,
I Dilithium - signature scheme based on Module SIS and LWE,
I Falcon - signature scheme based on NTRU and Ring-SIS.
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Encryption scheme based on Ring-LWE
[Lyubashevsky, Peikert, Regev 2011]

KeyGen : The secret key is a small s ∈ R
The public key is (a, b) = (a, b = a · s+ e) ∈ R2

q ,
with a← U(Rq) and a small e ∈ R.

Enc : Given m ∈ {0, 1}n, a message is a polynomial in R with coordinates
in {0, 1}. Sample small r, e1, e2 in R and output

(a · r + e1, b · r + e2 + bq/2c ·m) ∈ Rq ×Rq.

Dec : Given (u, v) ∈ Rq ×Rq, compute

v − u · s = (r · e− s · e1 + e2) + bbq/2c ·m

For each coordinate of m, the plaintext is 0 if the result is closer from
0 than bq/2c, and 1 otherwise.
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Kyber

[Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehle]

I Kyber relies on Module-LWE,
I Uses Rq = Zq[x]/〈x256 + 1〉 with q = 7681.

I The small elements follow a binomial distribution Bη:
For some positive integer η, sample {(ai, bi)}ηi=1 ← ({0, 1}2)η and output∑η

i=1(ai − bi).

I The uniform public key is generated given a seed and a function PARSE,
I Multiplication operations uses NTT - Number Theoretic Transform - which is a

variant of the FFT in rings,
I Size of ciphertext is compressed by keeping only high order bits.
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Performances

Current timings (ECDH)
Public key around 32 bytes
Efficiency comparable in
terms of cycles.
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Choice of parameters

I Parameters used by Kyber:
I n = 256 and d = 2, 3, 4 giving three levels of security: 512, 768, 1024,
I q = 7681

I How do they choose the parameters?
I By considering the LWE instance with dimension nd,
I and the ”lattice estimator” [Albrecht, Player, Scott 2015],

I There is no consideration of the structure!
I Why?
I Because we don’t know how...
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Using LWE to build constructions in practice

using
structured
variants

Learning
With Errors

Lattice
→ solve Approx SVP

on a
restricted

class

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof
Efficient

Cryptanalysis
Choice of parameters
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Conclusion

I Lattice-based cryptography allows to build efficient constructions such as
encryption or signature schemes with a security based on the hardness of
difficult algorithmic problems on lattices.

I Three schemes (Kyber, Dilithium and Falcon) will be standardise by the NIST,
together with a hash-based signature.
Two of them are based on Module-LWE.

I Approx Ideal SVP seems to be the easier problem to try to solve→ the results
of recent attacks does not impact the security of lattice-based constructions.
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