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Context in public key cryptography Y GREYC

— Need for alternatives
» Post-quantum secure,
> Efficient,
> New functionalities, different types of constructions.

Lattice-based
3 over 4 standards

NIST competition Code-based

Multivariate, Isogenies,
Hash based ..
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Context in public key cryptography

— Need for alternatives
» Post-quantum secure,
> Efficient,
> New functionalities, different types of constructions.

Strong security guarantees
Lattice-based —

3 over 4 standards i. Rich and flexible

NIST competition Code-based o
Efficiency

Multivariate, Isogenies,
Hash based ..
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Lattices Y GREYC
L by .
Lattice

L(B) = {>]_, aibi,a; € Z}, where the (b;)1<;<»’s, linearly independent vectors,
are a basis of L(B).



Shortest Vector Problem ( SVP) Y GREYC

Given a lattice £(B) of dimension n:

Output: find the shortest non-zero vector x € £(B).
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Approx Shortest Vector Problem (Approx SVP.) %Y GREYC

Given a lattice £(B) of dimension n:

Output: find a non-zero vector x € £(B) such that ||x|| < 71 (£(B))
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Gap Shortest Vector Problem (GapSVP) %Y GREYC

Given a lattice £(B) of dimension n and d > 0:

Output: e YES: there is z € £(B) non-zero such that ||z|| < d,
e NO: for all non-zero vectors z € L(B): ||| > d.




Gap Shortest Vector Problem (GapSVP.) %Y GREYC

Given a lattice £(B) of dimension n and d > 0:

Output: e YES: there is z € £(B) non-zero such that ||z|| < d,
e NO: for all non-zero vectors z € L(B): ||z|| > ~d.

0 0000000000000 00000 L4 L4 i L4 i L

S 000000600000000600060000 . . . . . .



Closest Vector Problem Y GREYC
Given a lattice £(B) of dimension n and t € Z™:

Output: find x € Z™ minimizing ||Bx — t||.
Approx variant: find x € Z™ such that ||Bx — t|| < ~ - dist(t, A(B)).
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Closest Vector Problem Y GREYC
Given a lattice £(B) of dimension n and t € Z™:

Output: find x € Z™ minimizing ||Bx — t||.
Approx variant: find x € Z™ such that ||Bx — t|| < ~ - dist(t, A(B)).

How hard is it to solve those problems?



Hardness of Approx SVP, Y GREYC
tOCSOOS|E/e 252(/7‘] 282(n) po|y(,,)
N % \{ﬁ po|¥(/1) 2()}”} .
Complexity NP'harﬁ Crypto P
hardness
NP N CoNP
Conjecture

There is no polynomial time algorithm that approximates this lattice problem and
its variants to within polynomial factors.

] 736



At the heart of lattice-based cryptography
the Learning With Errors problem

» Introduced by Regev in 2005

Problem: solve a linear system with noise.

Find (5‘1, S9, 83, 54, 5’3) such that:

S$1 42252 + 17s3 + 254 + S5 "2
351+ 2824 11s3 + 7s4 + 8ss
1551 4+ 1352 + 1053 + 354 + 555
17s1 + 11so + 20s3 4 954 + 355
251 + 1452 + 1353 4 654 + 755
451 4+ 21s2 + 9s3 + 554+ s5
1151 + 1250 + 583+ sa+9s5 =

%

%

Q

Q

Q

~» With an arbitrary number of equations.
]

16
17

18

mod 23
mod 23
mod 23
mod 23
mod 23
mod 23
mod 23

Y GREYC
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The Learning With Errors problem Y GREYC
LWE!

GivenmA,AH+ mH

n

» AU (Zflnx”),
> s < U(Z;‘), -
> ¢ small compared to g. Discrete Gaussian error Dz, oq

Search version: Given (A,b = As +e), find s.
Decision version: Distinguish from (A, b) with b uniform.
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Solving LWE Y GREYC

» Exhaustive search

> Tryallthe s € Z; — is b — As small?
» = cost around ¢".

——— 10136



Solving LWE Y GREYC

» Exhaustive search
> Tryallthe s € Z; — is b — As small?
» = cost around ¢".
» Other possibility: guess the n first errors, find s — is b — As small?
» = cost around (agqy/n)".
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Solving LWE Y GREYC

» Exhaustive search
> Tryallthe s € Z; — is b — As small?
» = cost around ¢".
» Other possibility: guess the n first errors, find s — is b — As small?
» = cost around (agqy/n)".

» How to do better?
» LWE is a lattice problem: consider

Aj(A)={yeZ™:y=Asmodgqfors e Z"}.

Solving LWE < solving CVP in this lattice.

nlogq

» Cost: (nlogq) log? o

log? a

——— 10136



Worst-case to average-
case reduction

e Regev 2005 - quantum

o Peikert 2009 - classical ¢ exp

o Brakerski, Langlois, Peikert
Regev, Stehlé 2013 - classical

Learning
With Errors

s Solve Approx GapSVP/SIVpR
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Using LWE to build provable constructions - theory ""\GREYC

Lattice
Worst-case to average-
case reduction

— solve Approx SVP

Learning
With Errors

Security proof

Cryptographic
constructions




Using LWE Y GREYC

Hardness of LWE used as a foundation for many constructions.

Problem: constructions based on LWE
enjoy a nice guarantee of security
but are too costly in practice.

Learning
With Errors

ryptographic constructions

Signature, encryption
Advanced schemes
Fully Homomorphic Encryption

Security proof

Solutions used today?



Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured)
variants of LWE.

» Public Key Encryption
Crystals - Kyber: Module-LWE with both secret and noise chosen from a
centered binomial distribution.
Saber: Module-LWR (deterministic variant).
NTRU

FrodoKEM (as alternate candidate): LWE but with smaller parameters.
» Signature

Crystals - Dilithium: Module-LWE with both secret and noise chosen in a small
uniform interval, and Module-SIS.
Falcon: Ring-SIS on NTRU matrices.

——— 14136



Using LWE to build constructions

Lattice

Worst-case to average-
case reduction

— solve Approx SVP

Learning
With Errors

| =
Security proof

Cryptographic
constructions

oY GREYC

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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Using LWE to build constructions in practice g GREYC

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Lattice
Worst-case to average-

case reduction — solve Approx SVP

.
.
.
.
.

.
.
-
-

Learning

Cryptanalysis
With Errors

Choice of parameters

Security proof

'

Cryptographic
constructions
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Using LWE to build constructions in practice

oY GREYC

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Lattice
Worst-case to average-

case reduction

— solve Approx SVP

*
ona
restricted

class “_
Learning using Cryptanalysis
With Errors Sf,r::f;l:tzd Choice of parameters
Security proof

*
l“‘

Efficient
Cryptographic
constructions
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Studying theoretical hardness of variants of LWE Y GREYC

— A better understanding of the underlying hardness hypothesis
to reduce the gap between what is proven and what is used in practice

» Hardness of LWE variants
» Using the Rényi divergence in reductions.

» Recent results on the hardness of Module-LWE

> Binary (bounded) secret,
» Classical hardness,
» Entropic secret.



LWE variants

Choose another distribution for the secret or the error.
Regev 2009: uniform secret and gaussian error.

A |,

<
n

Same distribution as the error: in particular Gaussian,

Binary (Unif in {0,1}"),
Entropic.

Gaussian (continue,
discretize, discrete ...),

Uniform in small interval,

Binary under conditions.
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Hardness of the Learning With Errors problem %Y GREYC

Worst-case to average-
case reduction

Lattice

o Regev 2005 - quantum

o Peikert 2009 - classical g exp

o Brakerski, Langlois, Peikert
Regev, Stehlé 2013 - classical

— solve Approx SVP

Learning
With Errors

Peikert 2010 - discrete Gaussian noise

Déttling, Miller-Quade 2013 - small uniform
Micciancio, Peikert 2013 - small uniform and binary noise
e Our result 2015 - small uniform, dimension preserving
Applebaum, Cash, Peikert, Sahai 2009 - same error and secret

Goldwasser, Kalai, Peikert, Vaikuntanathan 2010 - binary secret

Brakerski, Langlois, Peikert, Regev, Stehlé 2013 - binary secret
Micciancio 2018 - binary secret

Brakerski, D6ttling 2020 - entropic secret

Self reductions

——— 1836



Using the Rényi divergence Y GREYC

with S. Bai, T. Lepoint, D. Stehlé, R. Steinfeld and A. Sakzad
» Introduction of RD in security proofs as a measure of distribution closeness,

Let Dy, D> be two discrete probability distributions.

1
Statistical distance A(Dy, D2) = 5 > Di(x) - Da(x)l,
zeSupp(D1)

Rényi divergence Di(x)?
y g Ro(D1, Da) = Z 1(2) ‘

z€Supp(D1) Da(x)
Both fulfill the probability preservation property for an event E:
Dy(E)-A(Dy,D2) < Do(E) (additive)

D1(E)?/ (D1, D3) ; Do(E) (multiplicative)

——— 18196



Reduction using the Rényi divergence %Y GREYC

Reduction from LWE,,, (with error ) to LWE,,, (with error v;).

Idea: show that if an adversary can solve LWE,,, with a probability of success =,
non negligible, then he can solve LWE,,, with a probablllty 5> non negligible.

Using the probability preservation property, we have that:

L= A, ) = A(r,4)  negligible
1/ Ro(1,v2) = Io(¢r,1p2)  constant

] 20/36



Hardness of LWE with small uniform noise Y GREYC
[Decision LWE noise D ] » Quite direct by adding samples,
¢ then decision-to-search reduction.
=Dy +Us With (A,b = As + e) with e «+ D,

compute (A, b + e’) with e + Ug,
[ Search LWE noise

» Using that the Rényi divergence
R2(Ugl|®) can be bounded by
[ Search LWE noise Up ] 14+1.05- 5

» Using Micciancio Mol 11 sample
preserving search-to-decision
reduction (needs prime g).

[Decision LWE noise Ug




More general result Y GREYC

Using the Rényi divergence, we have a reduction:

[ Search LWE noise D, J

» Either R2(¢||Da) is small,
» Either Ra2(v||1p + Do) is small.

[ Search LWE noise ¢ j

» Works nicely if the two distributions are close enough,
» Only needs to compute R,
> Distributions may be too far from each other (example: binary).

——— 22136



Studying theoretical hardness of variants of LWE Y GREYC

— A better understanding of the underlying hardness hypothesis
to reduce the gap between what is proven and what is used in practice

» Hardness of LWE variants
» Using the Rényi divergence in reductions.

» Recent results on the hardness of Module-LWE

> Binary (bounded) secret,
» Classical hardness,
» Entropic secret.



Idea: replace Z" by R = Z[z]/{(z" + 1) XY GREYC

where n = 2* then the polynomial =™ + 1 is irreducible.
Elements of this ring are polynomials of degree less than n.

R is isomorph to 7"

Leta € R, we have a(z) = ag + a1z + ... + ap_12" 1,
the isomorphism R — Z" associate
ao

ai
the polynomial a € R to the vectora = . ez".

an—1

——— 24196



Idea: replace Z" by R = Z[z]|/{z" + 1)

Let’s look at the product of two polynomials z™ + 1
» a(z)=ap+ar-z+...
> s(z)=so+a-x+...

Using matrices, it gives the following block:

Y GREYC
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Module LWE

Let K be a number field of degree n with R its ring of integers.
1) and of R as Z[z] /(2™ + 1) for n = 2F,

Replace Z by R, and Z, by R, = R/qR.

Think of K as Q[z]/(z™ +

:

-
s
4 )

a;; € Rq

Rot(alyl) (S ngn ank d
a

> A« U(R™9),
> s+ U(RY),

> ¢ c R™ small compared to q.

=]

)

Special case d = 1
is Ring-LWE

Y GREYC
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Module or Rings?

Approx SVP
on Modules

Langlois, Stehlé 15

Module LWE

Y GREYC

|
! Gap between
"d=1landd=2

Approx SVP
| on Ideals

LPR10, PRS17

Ring LWE

Albrecht, Deo 17

» Choice of parameters
> Ry = Zylz]/(

2™ + 1): constraints on parameters n = 2%, ¢ = 1 mod 2n ...

» An example of parameters set of a signature:

> n =512 = 60 bits of security,
> n = 1024 = 140 bits of security,

> (n = 256,d = 3) gives nd = 768 which is "in between”.

» Module LWE allows more flexibility.



Hardness of Module Learning With Errors problem  §% GREYC

Worst-case to average-

X Module Lattice
case reduction

ey

— solve Module
Approx SVP

o Langlois Stehlé 2015 - quantum, ¢ poly
e Folklore: adapting Peikert 2009 gives classical
reduction but ¢ exp and only search variant

An R-module M of rank d defines via
the canonical embedding o : K — R"

Module Learning a module lattice o(M) € R™

With Errors

Self reductions

Applebaum, Cash, Peikert, Sahai 2009 - same error and secret

] 28/36



hd Al J
Hardness of Module Learning With Errors problem

2 GREYC
with K. Boudgoust, C. Jeudy, W. Wen

Worst-case to average-
case reduction

Module Lattice

¢ Langlois Stehlé 2015 - quantum, ¢ poly
e Our result: classical, ¢ poly, decisional
but rank linear

e o o o o o
— solve Module
Approx GapSVP

An R-module M of rank d defines via
the canonical embedding o : K — R"

Module Learning a module lattice o(1) € R™

With Errors

Self reductions

Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
e Our results 20 & 21: binary secret, rank inscrease
e Our result 2023: »-bounded secret

29/36



Hardness of binary Module-LWE Y GREYC

The secret s € R is binary and the secret s € R/, is modulo q.

|

A

A

——
d

+ H Module-LWE with binary secret
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Hardness of binary Module-LWE %Y GREYC

The secret s € R is binary and the secret s € R/, is modulo q.

>

m{ A 3 A }H + H Module-LWE with binary secret

= =X
multiple secrets Module-LWE: A ~ BC + Z
(not for Ring-LWE)
C
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Hardness of binary Module-LWE %Y GREYC

The secret s € R is binary and the secret s € R/, is modulo q.

>

m{ A 3 A }H + H Module-LWE with binary secret

= =X
multiple secrets Module-LWE: A ~ BC + Z
(not for Ring-LWE)

new secret new error
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Hardness of binary Module-LWE %Y GREYC

The secret s € R is binary and the secret s € R/, is modulo q.

>

m{ A i A JH + H Module-LWE with binary secret
— T
multiple secrets Module-LWE: A ~ BC + Z
(not for Ring-LWE)

new secret new error Pb: correlation

] 30/36



Hardness of binary Module-LWE

The secret s € R is binary and the secret s € R/, is modulo q.

>

JH + H Module-LWE with binary secret

multiple secrets Module-LWE: A ~ BC + Z

Leftover Hash Lemma

d > llog(q)

+

Z

BN
,+e

3|

(not for Ring-LWE)

Y GREYC
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Hardness of binary Module-LWE

The secret s € R is binary and the secret s € R/, is modulo q.

>

m{ A 3 A }H + H Module-LWE with binary secret

multiple secrets Module-LWE: A ~ BC + Z

(not for Ring-LWE)
B[]
e

fa——;

Leftover Hash Lemma a
d > llog(q) handle the noise

,,,,,,

A [5] o

Module-LWE with uniform secret



Hardness of binary Module-LWE %Y GREYC

The secret s € R is binary and the secret s € R/, is modulo q.

>

m{ A 3 A }H + H Module-LWE with binary secret

multiple secrets Module-LWE: A ~ BC + Z
(not for Ring-LWE)

,,,,,,,,,

B B S -

Leftover Hash Lemma

d > llog(q)
F « [GKPV10] noise flooding

1
+1 Z | 1. Using Rényi divergence
|

———————— 2. Using Extended Module-LWE
Module-LWE with uniform secret additional hint Zs

] 30/36




Using the Rényi divergence in the reduction Y GREYC

Example: two Gaussians Dz and Dg .,

Tl C 2
A(Dg, D) = Y22l

With [|c]| < a
A(Dg, Ds,) = Y2l — /8 < negligible
Ro(Dg,Dg.) =exp (2”/95“2> ~1+ 2”2—5”2 = a/f < constant

] 31/36



Hardness of binary Module-LWE %Y GREYC

The secret s € R is binary and the secret s € R/, is modulo q.

>

m{ A 3 A }H + H Module-LWE with binary secret

multiple secrets Module-LWE: A ~ BC + Z
(not for Ring-LWE)

,,,,,,,,,

B B S -

Leftover Hash Lemma

d > llog(q)
F « [GKPV10] noise flooding

1
+1 Z | 1. Using Rényi divergence
|

———————— 2. Using Extended Module-LWE
Module-LWE with uniform secret additional hint Zs
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Hardness of binary Module-LWE Y GREYC
Standard Module-LWE — Binary secret Module-LWE
modulus ¢ modulus ¢
ring degree n ring degree n
secret s € R} secret s € RY
Gaussian width « Gaussian width s
rank ¢ rank d

Property Contribution 1 Contribution 2
Minimal rank d | ¢logq + O(logn) (£+1)log g+ w(logn)
Noise ratio /o | O(n2/m) O(n%/d)
Condition on ¢ prime other restrictions
Decision/Search | search decision

— Both proofs have their (dis)advantages

——— 3396



Generalisation to n-bounded secrets £ GREYC

Standard Module-LWE — 7-Module-LWE

modulus ¢ modulus ¢
ring degree n ring degree n
secret s € R. secret s € RY
Gaussian width o Gaussian width g
rank ¢ rank d
Property Contribution 1 Contribution 2
P llo Togn 20 1o Togn
Minimal rank d | 5251 + O(3E2) oeet +w(Et)
Noise ratio 3/ | O((n — 1)n?/md) | O((n — 1)*n2/d)

— trade-off between minimal rank and noise ratio

34/36



Classical hardness of Module-LWE Y GREYC
» Adapting and merging module
[ Module-GapSVP., J variants of Peikert 09 (classical) and
Peikert, Regev,
£>2q>2% Stephens-Davidowitz 17
(decisional),
[Modwe-LWEn,k,q,ﬂ,Sa]
d > 3n + w(logy n) > Adapting Brakerski, Langlois,
Peikert, Regev, Stehlé 13 using
EBinary Module-LWEnyd,qy\I,q] Extended Module-LWE,

» Using Albrecht, Deo 17, computing
E Module-LWE,, 4, w_, ] bounds on singular values of rotation

- matrix, loss in the reduction depends
on the norm of the secret.

» number theoretic constraints on ¢
> d > 3n+ w(log,n) and 5 = O( 5/2)

——— 35136




Conclusion Y GREYC

» Hardness of Module-LWE with small secret,
» Hardness of Module-LWE with entropic secret,
» Still conditions on parameters and on the module rank.

Some open questions
» Can we prove those results for smaller rank? In particular Ring-LWE?
» Other error distributions?

] 36/36
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